
Towards a Model of API Learning
Caitlin Kelleher

Department of Computer Science and Engineering
Washington University in St. Louis

St. Louis, MO, USA
ckelleher@wustl.edu

Michelle Ichinco
Department of Computer Science

University of Massachusetts Lowell
Lowell, MA, USA

michelle ichinco@uml.edu

Abstract—In today’s world, learning new APIs (Application
Programming Interfaces) is fundamental to being a programmer.
Prior research suggests that programmers learn on-the-fly while
they work on other project-related tasks. Yet, this process is
often inefficient. This inefficiency has inspired research seeking
to understand and improve API learnability. While the existing
research has provided insight into API learning, we still have a
fractured understanding of the process of learning a new API. In
this paper, we take the first steps towards developing a theoretical
model of API learning by combining predictions from Infor-
mation Foraging Theory (IFT) to describe information search
behavior, Cognitive Load Theory (CLT) to describe learning, and
External Memory (EM) to describe how API learners augment
their short term memories. Our proposed model is consistent
with existing research on barriers to learning APIs and helps to
provide explanations for these barriers as well as suggest new
research directions.

Index Terms—API Learning, Information Foraging, Cognitive
Load Theory, External Memory

I. INTRODUCTION

Software plays an important and growing role in the US
economy. In fact, the US Bureau of Labor Statistics predicts
that the number of software developers will grow by more
than 250,000 between 2016 and 2026, an increase of more
than 30% [1]. Unlike many fields, software development is
unlikely to be readily automatable, increasing the importance
of improving programmer productivity. Application Program-
ming Interfaces (APIs) decrease the amount of work necessary
to build a new system by enabling reuse of code that others
have already written and tested. API use is widespread. In
fact, some estimate that if we include both APIs produced
in-house for a project as well as those produced by external
organizations, that almost all of the lines of code programmers
write involve an API [44].

In a world of pervasive API use, learning new APIs is
fundamental to being a programmer. The ProgrammableWeb,
which lists only web-focused APIs, adds approximately 40
new web-based APIs to its database each week and contained
over 19,000 APIs as of January 2018 [2], [65]. When starting
a new project, programmers often need to learn one or more
new APIs. Prior research suggests that programmers learn
on-the-fly while they work on other project-related tasks [8].
During this process, programmers often struggle 1) to frame
questions that address their information need [14], [64] and 2)
to integrate multiple API elements [14], [60], [61].

The inefficiency of on-the-fly API learning [60], [61] has
inspired a diverse set of research agendas with the end goal of
improving API learnability including: programmers’ perceived
API learning barriers [14], [60], [61], [64], how to design more
usable APIs [10], [39], [51], [70], [71], how to improve API
documentation [4], [15], [22], [30], [40], [46], [49], [62], [68],
[71]–[73], and how to design tools that support API learning
[5], [11], [19], [20], [47], [55]–[57], [66], [69], [77]. However,
despite the diversity of API learnability topics covered in
the literature, we still have a fractured understanding of the
process of learning a new API.

In this paper, we take the first steps towards developing a
theoretical model of API learning by combining predictions
from Information Foraging Theory (IFT) to describe informa-
tion search behavior, Cognitive Load Theory (CLT) to describe
learning, and External Memory (EM) to describe how API
learners augment their short term memories. This proposed
model creates a new lens through which we can analyze API
learning behavior in the context of existing tools and identify
opportunities for further study and new support tools.

II. THEORETICAL BACKGROUND

We propose a theoretical model that describes task com-
pletion using an unfamiliar API grounded in three areas
of research: Information Foraging Theory, Cognitive Load
Theory and External Memory.

A. Information Foraging Theory
When completing a task using an unfamiliar API, a pro-

grammer must search for and process information related
to that task. Information Foraging Theory (IFT) provides a
predictive model of search behavior based on animal foraging
behavior [53]. IFT predicts that users will attempt to maximize
the ratio of the value of found information to the cost of
obtaining that information. In each information patch, or
document, users make a decision about whether to process
information in that patch, navigate to a connected patch, or
enrich the information environment [53]. Examples of enrich-
ment include decreasing the cost of re-finding information (e.g.
creating a bookmark) or generating a new information patch
using a search engine [16]. We are not aware of anyone having
applied IFT within the domain of API Learning. A number
of researchers have identified information foraging behavior
among programmers [6]–[8], [12], [13], [24], [63], applied IFT
to programming-related domains including debugging [16],



Fig. 1. Model Overview

[25], [28], code navigation [45], maintenance tasks [26], [27],
and modified IFT to account for changing goals [29], [52].

B. Cognitive Load Theory
Cognitive Load Theory (CLT) observes that working mem-

ory is a bottleneck in learning tasks [18] and describes three
types of working memory loads that can impact learning:
intrinsic load, extraneous load, and germane load [50], [75].
A learning task’s intrinsic load is determined by the task’s
nature and the learner’s expertise and is generally considered
unalterable [75]. Most adults can easily sum small integers,
for example, but a young child may struggle. Extraneous
load consists of tasks that are not directly related to the
specific learning goals [75]. This load can be imposed by
activities like unnecessary searches for information [23] or
a need to integrate different sources of information [74], [75].
Germane load represents extra effort that can support learning.
Activities such as identifying and explaining a problem’s sub-
steps require additional cognitive resources, but can also lead
to better learning outcomes [3], [9], [58], [75]. Although CLT
has been applied in the CS education context [31]–[38], [41]–
[43], [76], to the best of our knowledge it has not been
previously applied to API learning.

C. External Memory
The idea of an external memory aid has been proposed

and studied within the Psychology community. Typically, an

external memory aid is created by making a change or changes
in an external context (i.e. somewhere other than the person’s
brain) to serve as a reminder [21]. Using an external memory
aid is one of many forms of cognitive offloading, a process
in which a person changes their physical space to lower the
cognitive demand of a task [59]. The existing work on external
memory aids as reminders does not apply directly to the
context of completing tasks using an unfamiliar API. However,
one study of when to interrupt programmers observed the use
of external memory [17] to manage high cognitive demands.

III. MODELING API LEARNING

Figure 1 shows an overview of our proposed model of
task completion using an unfamiliar API which integrates
predictions from Information Foraging Theory (IFT), Cog-
nitive Load Theory (CLT) and the use of external memory
aids. The model includes a cognitive context, in which the
programmer processes information and makes decisions about
which actions to take. To complete a sub-goal, we predict that
programmers will move through three stages: Programmers
will begin in the Information Collection Stage and interact
with the Information Context to find information relevant to
their current sub-goal; Next, programmers will move to the
Information Organization Stage and interact with the External
Memory Context to retrieve and manipulate found information
into a usable form; Finally, programmers will move to the



Solution Testing Stage and interact with the Code Context to
integrate and test potential solutions to their sub-goal. Below,
we describe each of the sub-goal solution stages, the actions
that are possible within that stage, and its’ relationship to IFT,
CLT, and external memory.

A. Information Collection Stage
Since programmers are initially unfamiliar with the API

they are using, they will begin in the Information Collection
Stage. In this stage, programmers can search for new infor-
mation using one of several actions: performing a keyword
search, evaluating the results of that search, navigating to a
potentially relevant page, and exploring the contents of that
page to find potentially useful information.

Search: The programmer performs a new keyword
search. At the beginning of the task, the programmer relies
on information in long-term memory to select appropriate
keywords, leveraging existing knowledge that may not be
relevant to the current API. Later on, the programmer may
also leverage information found during information collection
to select better keywords. In the process of learning how to
translate goals into appropriate queries, API specific keywords
are a source of extraneous load.

Results: The programmer reviews the results of a
recent search, looking for links that may contain relevant
information. When reviewing search results, programmers
evaluate the likelihood that any given link will contain the
target information. We predict that this evaluation will be
based primarily on information drawn from long-term mem-
ory, short-term memory, and the current search results. Making
relevance judgments is a source of extraneous load.

Navigate: The programmer navigates to a new page
either from search results or from a currently viewed
page. The decision to navigate to a new page is the result
of a previous action. The act of navigating does not incur a
cognitive cost, though it may incur a time cost.

Page: The programmer searches within the current
page for the target information. While viewing a page,
the programmer has to scan for potentially relevant sections
of information. Determinations of relevance are made by
combining information from long-term memory and short-
term memory with information on the page itself. Information
that the programmer believes to be relevant will be stored in
external memory. The degree of information review can vary.
The programmer may simply scan for words related to the
target information, incurring extraneous load. In other cases,
programmers may be unsure of how related the current content
is to the target information and read content within the page
carefully in order to determine relevance, an activity that may
incur extraneous load or germane load, depending on how well
the content matches their task. Activities like self-explaining
code behavior or reading conceptual material related to the
API are more likely to incur germane load.

IFT predicts that programmers will select actions in order
to maximize the value of information obtained per cost of
interaction [53], [54]. Programmers will continue to collect

information and store it using external memory until they
believe that they can construct a solution.

B. Information Organization Stage
Once programmers have collected enough information that

they believe a sub-goal solution may be possible, they progress
to the Information Organization Stage. The goal is to identify
relevant information within external memory and use it to
compose a potential solution. Programmers often need to
integrate information from several sources, and may choose to
edit and store partial potential sub-goal solutions in external
memory. Along the way, programmers may identify a need to
revisit the Information Collection Stage or modify their current
sub-goal due to a previously unrecognized information need.

Today’s programmers have little or no explicit support
for external memory. Instead, our informal discussions with
programmers suggest that they use a variety of techniques,
including leaving open web browser tabs or copying relevant
information into a code or text editor. These differing tech-
niques may afford different opportunities for integrating and
editing the stored information.

Store: The programmer saves relevant information to
external memory. This action moves information from In-
formation Collection to Information Organization. Throughout
the Information Collection Stage, we expect programmers to
store potentially relevant information in external memory for
later use. Storing information likely incurs little cognitive cost.

Retrieve: The programmer retrieves information from
external memory. Retrieval may include actions like clicking
on an open, unfocused tab and scrolling through text in a
text editor to find a particular target. In essence, this is an
information foraging activity conducted in the external mem-
ory context. Relevance determinations are made by combining
information on the page with information from short and long
term memory, incurring extraneous load. Additionally, pro-
grammers may choose to expend additional germane cognitive
load to understand content deemed relevant.

Edit: The programmer edits code, either written inde-
pendently or adapted from one or more examples stored
in external memory. In many cases, programmers need to
combine information from multiple sources [60], [61] as well
as short and long-term memory in order to compose a solution
to an identified sub-goal, an activity that can incur extraneous
load. Here, external memory serves as an extension of working
memory, relieving the programmer of holding all of the
solution details in working memory and allowing processing
of a single modification at a time.

Delete: The programmer removes information previ-
ously stored in external memory. This can occur when a pro-
grammer realizes that information previously collected is not
relevant to the current sub-goal. Cognitive resources devoted
to this information are extraneous. Because this information
was organized and elaborated, programmers are more likely
to have encoded some of it in long-term memory.

Prior research in CLT suggests that working memory is an
extremely limited resource, and one that is easy to overwhelm



even with carefully designed educational activities [48]. While
prior research on external memory focuses on its’ use as
a reminder system, researchers have found that the act of
organizing it using an external memory can lead to long
term learning [21]. Taken together, and within the context
of completing a programming task using an unfamiliar API,
external memory allows programmers to 1) hold onto relevant
information with no cognitive cost, and 2) manage cognitive
load associated with integrating information from multiple
sources. Further, we predict that information that is actively
manipulated via organization or editing (a form of germane
load) will be more likely to be encoded to long-term memory.

C. Solution Testing Stage
At this stage, programmers will have a potential solution

to test. That solution may need to be moved from external
memory to the code context and modified to fit the current
program. In many cases, programmers will be able to easily
integrate and test their potential solution. The results of run-
ning the program will then inform the programmer’s selection
of the next sub-goal. However, in some cases, attempting to
integrate the potential solution will result in a question that
requires the programmer to return to an earlier stage.

Read Code: The programmer reads existing code in
their current program. At the beginning of the Solution
Testing Stage, a programmer needs to determine where in their
current program code to integrate a potential solution. This
early process is information foraging. Later, the programmer
may need to re-read code to evaluate its testability.

Edit Code: The programmer edits code to incorporate
a potential solution to the current sub-goal. Often, editing
will begin with copying and pasting the potential solution from
external memory. The programmer may need to modify the
code further for use in the current program. In these cases, the
programmer will use the code context as an external memory
as well as knowledge from long-term and working memory to
plan and carry out necessary edits. In other cases, the potential
solution may not require modification; pasting a potential
solution into the code requires little cognitive investment.

Run Code: Test a solution to determine whether or not it
achieves the current sub-goal. Running the code will often
be a straightforward action that does not require additional
cognitive effort. However, in some cases, the programmer may
need to plan interactions with the running program in order to
trigger the modified code. While debugging is a complex and
interesting activity, we believe it is distinct from API learning
and do not focus on it in this model.

Results: Observe the output of the running program to
evaluate whether it achieves the sub-goal. In the Solution
Testing Stage, the programmer leverages the results of the
Information Organization Stage as stored in external memory.
The programmer’s IDE can then serve as an additional external
memory supporting any further modifications that are neces-
sary to incorporate the solution into the broader context of the
program. CLT and external memory research predict that situ-
ations in which the programmer has to manipulate a potential

solution copied from external memory in order to integrate it
are more likely to result in information encoded to long-term
memory. This can incur either germane or extraneous load,
depending on the nature of the required manipulations. The
testing stage does include debugging activities. However, since
the focus of this mode is API learning, we only want to model
debugging related to misunderstandings of API behavior.

IV. EVALUATION

As a preliminary evaluation, we examine our model in the
context of two consistent findings in API learning research.

Programmers often struggle to frame questions that address
their information need, in part due to difficulties determining
appropriate keywords for the target API [14] [78] [64]. Our
model suggests that programmers will leverage their existing
knowledge or schema in attempting to articulate a question.
Therefore, programmers may struggle when the language and
structure of the target API does not conform to terminology
and concepts they have mastered through the use of other
APIs. Designing APIs that match programmers intuitions can
be difficult given the diversity of experience they potentially
bring to each new API. However, we can begin to design
educational scaffolding to facilitate the transfer of concepts
and structures from previously used APIs. While some work
has begun to explore scaffolding the transfer of programming
language knowledge [67], exploration of knowledge transfer
for APIs is currently under-explored.

Programmers have difficulty integrating multiple API ele-
ments to solve a single problem, suggesting a need to help
programmers identify API usage patterns [14] [60] [61]. In
order to predict this using our model, it is necessary to know
something about the kinds of information that programmers
typically find through search. Documentation tends to focus
on a single API element at a time [14], while many program-
ming tasks require the integration of multiple API elements.
This information split increases cognitive effort programmers
must expend to bring the necessary information into a single
context. Software tools that more tightly integrate search and
development activities and enable easy, simultaneous access
to multiple code examples may help to decrease the difficulty
associated with the integration of API elements.

V. CONCLUSION AND FUTURE WORK

In this paper, we have described a theoretical model of API
learning that was derived from three well validated models
that describe aspects of the API learning process. Our model is
consistent with findings about API learning barriers, providing
a preliminary evaluation. Since much of this work is based
on data collected after the learning process has concluded,
future studies should capture the full process of API learning
as a further validation of our model. We are also intrigued
by the idea of an external memory that moves easily between
information collection and code editing activities. Additional
study of the information integration process and the flow from
information search to integration could help to inform the
design of external memory supports that can go beyond easing
the process of re-finding information.



REFERENCES

[1] Occupations with the most job growth.
https://www.bls.gov/emp/tables/occupations-most-job-growth.htm.

[2] Programmable Web: API Directory.
https://www.programmableweb.com/category/all/apis.

[3] Robert K. Atkinson, Alexander Renkl, and Mary Margaret Merrill.
Transitioning from studying examples to solving problems: Effects
of self-explanation prompts and fading worked-out steps. Journal of
Educational Psychology, 95(4):774, 2003.

[4] Hudson S. Borges and Marco Tulio Valente. Mining usage patterns for
the Android API. PeerJ Computer Science, 1:e12, 2015.

[5] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer.
Example-centric programming. In Proceedings of the 28th international
conference on Human factors in computing systems - CHI ’10, page
513, 2010.

[6] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and
Scott R. Klemmer. Two studies of opportunistic programming: inter-
leaving web foraging, learning, and writing code. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
1589–1598. ACM, 2009.

[7] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and
Scott R. Klemmer. Writing code to prototype, ideate, and discover.
IEEE software, 26(5):18–24, 2009.

[8] Joel Brandt, Philip J. Guo, Joel Lewenstein, and Scott R. Klemmer.
Opportunistic programming: How rapid ideation and prototyping occur
in practice. In Proceedings of the 4th international workshop on End-
user software engineering, pages 1–5. ACM, 2008.

[9] Michelene TH Chi, Miriam Bassok, Matthew W. Lewis, Peter Reimann,
and Robert Glaser. Self-explanations: How students study and use
examples in learning to solve problems. Cognitive science, 13(2):145–
182, 1989.

[10] Steven Clarke. Describing and measuring API usability with the
cognitive dimensions. In Cognitive Dimensions of Notations 10th
Anniversary Workshop, page 131. Citeseer, 2005.

[11] Aniket Dahotre, Vasanth Krishnamoorthy, Matt Corley, and Christopher
Scaffidi. Using intelligent tutors to enhance student learning of ap-
plication programming interfaces. Journal of Computing Sciences in
Colleges, 27(1):195–201, 2011.

[12] Brian Dorn and Mark Guzdial. Learning on the job: characterizing the
programming knowledge and learning strategies of web designers. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 703–712. ACM, 2010.

[13] Brian Dorn, Adam Stankiewicz, and Chris Roggi. Lost while searching:
Difficulties in information seeking among end-user programmers. In
Proceedings of the 76th ASIS&T Annual Meeting: Beyond the Cloud:
Rethinking Information Boundaries, page 21. American Society for
Information Science, 2013.

[14] Ekwa Duala-Ekoko and Martin P. Robillard. Asking and answering
questions about unfamiliar APIs: An exploratory study. In Software
Engineering (ICSE), 2012 34th International Conference on, pages 266–
276. IEEE, 2012.

[15] Daniel S. Eisenberg, Jeffrey Stylos, Andrew Faulring, and Brad A. My-
ers. Using association metrics to help users navigate API documentation.
In Visual Languages and Human-Centric Computing (VL/HCC), 2010
IEEE Symposium on, pages 23–30. IEEE, 2010.

[16] Scott D. Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett,
Rachel Bellamy, Joseph Lawrance, and Irwin Kwan. An information for-
aging theory perspective on tools for debugging, refactoring, and reuse
tasks. ACM Transactions on Software Engineering and Methodology
(TOSEM), 22(2):14, 2013.

[17] James Fogarty, Andrew J. Ko, Htet Htet Aung, Elspeth Golden, Karen P.
Tang, and Scott E. Hudson. Examining task engagement in sensor-
based statistical models of human interruptibility. In Proceedings of the
SIGCHI conference on Human Factors in Computing Systems, pages
331–340. ACM, 2005.

[18] Peter Gerjets and Katharina Scheiter. Goal configurations and processing
strategies as moderators between instructional design and cognitive load:
Evidence from hypertext-based instruction. Educational psychologist,
38(1):33–41, 2003.

[19] Max Goldman and Robert C Miller. Codetrail: Connecting source
code and web resources. Journal of Visual Languages & Computing,
20(4):223–235, 2009.

[20] Björn Hartmann, Mark Dhillon, and Matthew K Chan. Hypersource:
bridging the gap between source and code-related web sites. Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 2207–2210, 2011.

[21] Margaret Jean Intons-Peterson. External memory aids and their relation
to memory. In Cognitive psychology applied, pages 145–168. Psychol-
ogy Press, 2014.

[22] Sae Young Jeong, Yingyu Xie, Jack Beaton, Brad A. Myers, Jeff
Stylos, Ralf Ehret, Jan Karstens, Arkin Efeoglu, and Daniela K. Busse.
Improving documentation for eSOA APIs through user studies. In
International Symposium on End User Development, pages 86–105.
Springer, 2009.

[23] Paul A. Kirschner, John Sweller, and Richard E. Clark. Why minimal
guidance during instruction does not work: An analysis of the failure of
constructivist, discovery, problem-based, experiential, and inquiry-based
teaching. Educational psychologist, 41(2):75–86, 2006.

[24] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung.
An exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE Transactions on
software engineering, 32(12):971–987, 2006.

[25] Sandeep Kaur Kuttal, Anita Sarma, and Gregg Rothermel. Predator
behavior in the wild web world of bugs: An information foraging theory
perspective. 2013 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 59–66, 2013.

[26] Joseph Lawrance, Rachel Bellamy, and Margaret Burnett. Scents in
programs: Does information foraging theory apply to program main-
tenance? In Visual Languages and Human-Centric Computing, 2007.
VL/HCC 2007. IEEE Symposium on, pages 15–22. IEEE, 2007.

[27] Joseph Lawrance, Rachel Bellamy, Margaret Burnett, and Kyle Rector.
Using information scent to model the dynamic foraging behavior of
programmers in maintenance tasks. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1323–1332.
ACM, 2008.

[28] Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bel-
lamy, Kyle Rector, and Scott D. Fleming. How programmers debug,
revisited: An information foraging theory perspective. IEEE Transac-
tions on Software Engineering, 39(2):197–215, 2013.

[29] Joseph Lawrance, Margaret Burnett, Rachel Bellamy, Christopher Bog-
art, and Calvin Swart. Reactive information foraging for evolving
goals. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 25–34. ACM, 2010.

[30] Walid Maalej and Martin P. Robillard. Patterns of knowledge in API
reference documentation. IEEE Transactions on Software Engineering,
39(9):1264–1282, 2013.

[31] Lauren Margulieux, Richard Catrambone, and Mark Guzdial. Subgoal
labeled worked examples improve k-12 teacher performance in com-
puter. Proceedings of the Annual Meeting of the Cognitive Science
Society, 35 (35), 2013.

[32] Lauren E. Margulieux and Richard Catrambone. Improving problem
solving performance in computer-based learning environments through
subgoal labels. In Proceedings of the first ACM conference on Learn-
ing@ scale conference, pages 149–150. ACM, 2014.

[33] Lauren E. Margulieux and Richard Catrambone. Improving problem
solving with subgoal labels in expository text and worked examples.
Learning and Instruction, 42:58–71, 2016.

[34] Lauren E. Margulieux, Richard Catrambone, and Mark Guzdial. Em-
ploying subgoals in computer programming education. Computer
Science Education, 26(1):44–67, 2016.

[35] Lauren E. Margulieux, Mark Guzdial, and Richard Catrambone.
Subgoal-labeled instructional material improves performance and trans-
fer in learning to develop mobile applications. In Proceedings of
the ninth annual international conference on International computing
education research, pages 71–78. ACM, 2012.

[36] Lauren E Margulieux, Briana B Morrison, Mark Guzdial, and Richard
Catrambone. Training learners to self-explain: Designing instructions
and examples to improve problem solving. Singapore: International
Society of the Learning Sciences, 2016.

[37] Lauren Elizabeth Margulieux. Subgoal labeled instructional text and
worked examples in STEM education. PhD Thesis, Georgia Institute of
Technology, 2014.

[38] Lauren Elizabeth Margulieux. Using subgoal learning and self-
explanation to improve programming education. PhD Thesis, Georgia
Institute of Technology, 2016.



[39] Samuel G. McLellan, Alvin W. Roesler, Joseph T. Tempest, and Clay I.
Spinuzzi. Building more usable APIs. IEEE software, 15(3):78–86,
1998.

[40] Joo Eduardo Montandon, Hudson Borges, Daniel Felix, and Marco Tulio
Valente. Documenting apis with examples: Lessons learned with the
apiminer platform. In Reverse Engineering (WCRE), 2013 20th Working
Conference on, pages 401–408. IEEE, 2013.

[41] Briana B. Morrison, Brian Dorn, and Mark Guzdial. Measuring cognitive
load in introductory CS: adaptation of an instrument. In Proceedings
of the tenth annual conference on International computing education
research, pages 131–138. ACM, 2014.

[42] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark
Guzdial. Subgoals help students solve Parsons problems. In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education,
pages 42–47. ACM, 2016.

[43] Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. Subgoals,
context, and worked examples in learning computing problem solving.
In Proceedings of the eleventh annual international conference on
international computing education research, pages 21–29. ACM, 2015.

[44] Brad A. Myers and Jeffrey Stylos. Improving API usability. Communi-
cations of the ACM, 59(6):62–69, 2016.

[45] Nan Niu, Anas Mahmoud, and Gary Bradshaw. Information foraging as
a foundation for code navigation (NIER track). In Proceedings of the
33rd International Conference on Software Engineering, pages 816–819.
ACM, 2011.

[46] Janet Nykaza, Rhonda Messinger, Fran Boehme, Cherie L. Norman,
Matthew Mace, and Manuel Gordon. What programmers really want:
results of a needs assessment for SDK documentation. In Proceedings of
the 20th annual international conference on Computer documentation,
pages 133–141. ACM, 2002.

[47] Stephen Oney and Joel Brandt. Codelets. In Proceedings of the 2012
ACM annual conference on Human Factors in Computing Systems - CHI
’12, page 2697, 2012.

[48] Fred Paas, Alexander Renkl, and John Sweller. Cognitive load theory
and instructional design: Recent developments. Educational psycholo-
gist, 38(1):1–4, 2003.

[49] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne
Storey. Crowd documentation: Exploring the coverage and the dynamics
of API discussions on Stack Overflow. Georgia Institute of Technology,
Tech. Rep, 2012.

[50] Dale Parsons and Patricia Haden. Parson’s programming puzzles: a fun
and effective learning tool for first programming courses. In Proceedings
of the 8th Australasian Conference on Computing Education-Volume 52,
pages 157–163. Australian Computer Society, Inc., 2006.

[51] Marco Piccioni, Carlo A. Furia, and Bertrand Meyer. An empirical study
of API usability. In Empirical Software Engineering and Measurement,
2013 ACM/IEEE international symposium on, pages 5–14. IEEE, 2013.

[52] David Piorkowski, Scott Fleming, Christopher Scaffidi, Christopher
Bogart, Margaret Burnett, Bonnie John, Rachel Bellamy, and Calvin
Swart. Reactive information foraging: An empirical investigation of
theory-based recommender systems for programmers. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 1471–1480. ACM, 2012.

[53] Peter Pirolli and Stuart Card. Information foraging in information access
environments. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 51–58. ACM Press/Addison-Wesley
Publishing Co., 1995.

[54] Peter Pirolli and Stuart Card. Information foraging. Psychological
review, 106(4):643, 1999.

[55] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Michele Lanza. Prompter. Empirical Software Engineering,
pages 1–42, 2015.

[56] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Michele Lanza. Prompter: Turning the IDE into a self-
confident programming assistant. Empirical Software Engineering,
21(5):2190–2231, oct 2016.

[57] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di
Penta, Rocco Oliveto, Mir Hasan, Barbara Russo, Sonia Haiduc, and
Michele Lanza. Too long; didn’t watch!: extracting relevant fragments
from software development video tutorials. Proceedings of the 38th
International Conference on Software Engineering - ICSE ’16, pages
261–272, 2016.

[58] Alexander Renkl, Robin Stark, Hans Gruber, and Heinz Mandl. Learn-
ing from worked-out examples: The effects of example variability

and elicited self-explanations. Contemporary educational psychology,
23(1):90–108, 1998.

[59] Evan F Risko and Sam J Gilbert. Cognitive offloading. Trends in
Cognitive Sciences, 20(9):676–688, 2016.

[60] Martin P. Robillard. What makes APIs hard to learn? Answers from
developers. IEEE software, 26(6):27–34, 2009.

[61] Martin P. Robillard and Robert Deline. A field study of API learning
obstacles. Empirical Software Engineering, 16(6):703–732, 2011.

[62] Adriano M. Rocha and Marcelo A. Maia. Automated API documentation
with tutorials generated from Stack Overflow. In Proceedings of the
30th Brazilian Symposium on Software Engineering, pages 33–42. ACM,
2016.

[63] Mary Beth Rosson, Julie Ballin, and Heather Nash. Everyday program-
ming: Challenges and opportunities for informal web development. In
Visual Languages and Human Centric Computing, 2004 IEEE Sympo-
sium on, pages 123–130. IEEE, 2004.

[64] Chandan Raj Rupakheti and Daqing Hou. Satisfying Programmers’
Information Needs in API-Based Programming. In Program Compre-
hension (ICPC), 2011 IEEE 19th International Conference on, pages
250–253. IEEE, 2011.

[65] Wendell Santos. Research Shows Interest in
Providing APIs Still High — ProgrammableWeb.
https://www.programmableweb.com/news/research-shows-interest-
providing-apis-still-high/research/2018/02/23, 2018.

[66] Nicholas Sawadsky, Gail C Murphy, and Rahul Jiresal. Reverb: Recom-
mending code-related web pages. Proceedings of the 2013 International
Conference on Software Engineering, pages 812–821, 2013.

[67] Nischal Shrestha, Titus Barik, and Chris Parnin. It’s like python
but: Towards supporting transfer of programming language knowledge.
In 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 177–185. IEEE, 2018.

[68] S. M. Sohan, Craig Anslow, and Frank Maurer. Automated example
oriented REST API documentation at Cisco. In Proceedings of the 39th
International Conference on Software Engineering: Software Engineer-
ing in Practice Track, pages 213–222. IEEE Press, 2017.

[69] J Stylos and BA Myers. Mica: A web-search tool for finding api
components and examples. Visual Languages and Human-Centric
Computing, 2006. VL/HCC 2006. IEEE Symposium on, pages 195–202,
2006.

[70] Jeffrey Stylos and Steven Clarke. Usability implications of requiring
parameters in objects’ constructors. In Proceedings of the 29th in-
ternational conference on Software Engineering, pages 529–539. IEEE
Computer Society, 2007.

[71] Jeffrey Stylos and Brad A. Myers. The implications of method placement
on API learnability. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pages
105–112. ACM, 2008.

[72] Jeffrey Stylos, Brad A. Myers, and Zizhuang Yang. Jadeite: improving
API documentation using usage information. In CHI’09 Extended
Abstracts on Human Factors in Computing Systems, pages 4429–4434.
ACM, 2009.

[73] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. Live API
documentation. In Proceedings of the 36th International Conference on
Software Engineering, pages 643–652. ACM, 2014.

[74] Rohani A. Tarmizi and John Sweller. Guidance during mathematical
problem solving. Journal of educational psychology, 80(4):424, 1988.

[75] Jeroen JG Van Merrienboer and John Sweller. Cognitive load theory
and complex learning: Recent developments and future directions.
Educational psychology review, 17(2):147–177, 2005.

[76] Jeroen JG Van Merrinboer. Strategies for programming instruction in
high school: Program completion vs. program generation. Journal of
educational computing research, 6(3):265–285, 1990.

[77] Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal. Snipmatch:
using source code context to enhance snippet retrieval and parameteriza-
tion. Proceedings of the 25th annual ACM symposium on User interface
software and technology, pages 219–228, 2012.

[78] Yunwen Ye, Yasuhiro Yamamoto, Kumiyo Nakakoji, Yoshiyuki Nishi-
naka, and Mitsuhiro Asada. Searching the library and asking the
peers: learning to use java apis on demand. In Proceedings of the 5th
international symposium on Principles and practice of programming in
Java, pages 41–50. ACM, 2007.


