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Abstract—Programmers of all experience levels attempt to
leverage code snippets with varying success, often as reminders
or to learn new skills. To date, little work has explored the
specific elements within code snippets that are challenging for
novices. Comparing how novices and experts recall code snippets
may expose what code elements programmers focus on and
inform new approaches for improving examples for inexperienced
programmers. We conducted a study, inspired by past novice-
expert studies, in which we asked everyday, occasional, and non-
programmers to study and then recall code snippets. The key
distinctions and similarities in the types and locations of recalled
tokens provide insight for a set of recommendations that could
improve the presentation of code snippets.

I. INTRODUCTION

Many programmers attempt to use code examples on the
web, within tutorials and documentation, and through auto-
complete [1]. Code snippets can be essential learning re-
sources, especially for the millions of end-user programmers
who learn programming informally [2]. These less experienced
programmers often struggle using code examples [3], [4]. One
study found that a main hurdle for novices attempting to use
code examples was isolating the critical elements of examples
related to their problems [4].

Novices may have trouble identifying important elements
of code snippets because their lack of knowledge forces them
to process each element of the code individually [5]. In
contrast, experts can automatically ‘chunk’ multiple elements
and process them as one unit because they have schema.
Schema are long-term memory knowledge structures that
help experts to organize new information [5]–[7]. Schema
likely also help experts identify essential elements of content
because they can quickly align new content with their existing
knowledge [8]–[10]. However, work has not addressed how
the specific types and order of elements that novices and
experts recall can inform code example design. Furthermore,
existing research on this topic primarily occurred before blocks
programming languages became a popular way for novices
to begin programming. Understanding the differences in how
experts and novices recall code snippets could provide insight
into how to help novices focus their attention more effectively
on critical elements of both text and block examples.

We ran an exploratory study comparing how everyday,
occasional, and non-programmers recall snippets of code. To
explore differences between text and block code, participants
studied and recalled two text and two block snippets. This
work seeks to answer the question: Which code snippet ele-
ments do different levels of programmers initially recall? We
have two contributions: 1) the key similarities and differences
in recall between everyday, occasional and non-programmers,
and 2) recommendations for beginning to improve code snip-
pet presentations.

II. RELATED WORK

This study was inspired by past work in novice-expert recall
and code comprehension and contributes to work exploring
important elements in code examples.

Research has explored chunking through comparisons of
novice and expert recall in a variety of fields. One famous
study found that expert chess players could correctly recall
more chess pieces than novices for a valid configuration,
supporting the theory that the experts can chunk common
chess configurations using schema [6], [7]. Researchers have
also studied the differences between novices and experts
in fields such as physics [11] and programming [12]–[16].
Studies looking at schema and chunking in programming
have often involved novice and expert programmers recalling
code. Some of these studies replicate the chess study for
programming, finding that experts can accurately recall more
correctly structured code than random code [8]–[10], [15],
[17]. Studies have also looked at how recall correlated with
skills like comprehension and debugging [17], [18]. While
prior work considered the differences between novices’ and
experts’ knowledge and processing, our study design and
analysis enable us to recommend improvements for example
code, based on the types of elements programmers focus on.

Researchers have also developed a variety of theoretical
models explaining the processes of comprehending code, such
as top-down and bottom-up [19], [20]. Empirical work on code
comprehension has used a variety of methods in addition to
recall, such as eye tracking [21], answering questions [22],
code modification [23], and debugging [24]. We expected



Fig. 1. An example of blocks and text versions for the same code snippet.

the differences in how novices and experts focus on and
recall code in this study to complement findings in code
comprehension.

In working towards helping programmers better compre-
hend examples, researchers have identified beneficial qualities
of good code examples through: 1) analyzing effective code
examples [25]–[29], and 2) determining how to create effective
code summaries [30]–[34]. For the most part, this body of
work has not addressed differences in programming expertise.

III. METHODS

We ran a study using Mechanical Turk to explore how
programming experience affects recall of code.

A. Participants

We recruited participants through Amazon’s Mechanical
Turk (MTurk), an online crowdsourcing platform, in order
to recruit a diverse population of participants [35]. We re-
cruited three populations based on self-reporting: 1) 21 non-
programmers, 2) 21 occasional programmers, who program
once in a while or used to program in the past, and 3) 18
everyday programmers, who program on an everyday basis.
We grouped together participants who program once in a
while and in the past because prior work has suggested that
past programmers often forget many details [36]. We had
24 female, 35 male, and 1 unspecified gender participants.
Participants ranged in age from 22 to 50 (M = 33.3,SD= 7.3).

B. Materials

Through pilot testing, we iteratively created four snippets
of code in blocks and text for participants to recall. Each
code snippet had 8-11 lines of code and included one of four
control flow constructs: 1) a while loop, 2) an if-else block,
3) a for loop iterating three times, and 4) a for loop iterating
through a list of objects. Fig. 1 shows block and text versions
of the for each loop code snippet. We created code snippets
in Looking Glass [37], a Java-based blocks programming
environment for creating 3D animations. Looking Glass has a
unique storytelling API for 3D animation, including methods
like walk, turn, and think [38].

C. Study Protocol

Our study had: 1) an introduction phase, and 2) a study
and recall phase, in which participants had three chances to
memorize and recall four code snippets.

The first part of the study included an introduction, a
demographic survey, and sample tasks. In order to determine
participants’ programming experience, participants filled out a
survey that asked how often they program, how they learned
to program, and which programming languages they know.
To introduce participants to the mechanics of the study,
participants first stepped through instructions and completed
two sample recall tasks: one for text and one for blocks.

Participants then completed four study and recall tasks. In
each of these tasks, participants saw a snippet of code (as in
Fig. 1) and then attempted to recall it. In order to explore the
differences in recall for text and blocks code, two consecutive
tasks showed code in Java, while the other two tasks showed
code in blocks. We randomized and balanced the ordering of
the Java and blocks sets. Participants had three chances to
memorize and recall each code snippet. Participants had 90
seconds in their first attempt and 30 seconds in the second
and third attempts to recall each code snippet, based on pilot
testing. We did not want to limit participants’ recall by their
typing speed, so participants did not have time limits for recall.
After each pair of block and text code snippets, participants
answered questions about their cognitive load for those tasks,
using the validated difficulty and mental effort scales [39].

IV. RESULTS

This section reports: A) the overall differences in program-
mers’ recall, and B) differences in participants’ recall of token
types and positions in the first attempt. Because participants
recalled most of the tokens they recalled in their first attempt,
this paper only looks at participants’ first attempt at recalling
each code snippet. To compare recall of examples, we looked
at token types, as shown in Table I and the position of tokens
within examples. We compared token type recall using the
Kruskal-Wallace test with the Dunn test for follow-up pairwise
comparisons. To understand the position of tokens recalled,
we analyzed the correlation between the line number and the
percentage of tokens recalled in each line, using Spearman’s
R.

A. Overall

As expected, everyday programmers recalled larger overall
percentages of the code snippets and found the tasks easier.
Everyday programmers recalled significantly higher percent-
ages of overall tokens than occasional and non-programmers,
and occasional programmers also recalled significantly more



TABLE I. TOKEN TYPES

Group Token Type Example of token type

control
flow

constructs if, for, while
keywords new, final
variable types & identifiers Integer, index
conditionals isCollidingWith, true
operators !, not, ++

objects scope this
subject blueChicken, purpleChicken
accessors getRightHip, getLeftHip

separators separators ;, (, ) {, }
actions action identifiers move, turn, say
arguments numerical literals 5, 0

string literals ‘Uh oh’
enum literals ABOVE, FORWARD
function literals getDistanceTo
unit literals (only in blocks) meters, rotations

tokens than non-programmers (see Table III). Although we
expected to see differences in how programmers memorized
and recalled block and text code examples, we found only a
few differences, as shown in Table II.

Everyday programmers found the tasks significantly less
difficult (p < .05) and everyday programmers required less
effort than programmers with less experience (p < .05). Oc-
casional programmers also found the tasks significantly less
difficult than non-programmers (p < .05), but they did not
need significantly less mental effort than non-programmers.
B. Which elements do programmers initially recall?

Programming experience aided in early recall of: 1) struc-
tural tokens, and 2) meaning details. All programmers initially
recalled: 3) natural language tokens, and 4) tokens in the
beginning of the code snippet.

1) Structural tokens: Everyday and occasional program-
mers primarily focused on core structural tokens in the first
recall attempt (see Table III-Structural). These tokens set up
the overarching control flow, objects, and the actions objects
complete, but do not include the specifics of the control flow
or actions. Core structural tokens include: construct tokens
(e.g., for each in), related keywords (e.g., collection),
separators (e.g., {, }, ;), objects (e.g., this.bluechicken)
and actions (e.g., turn). For the most part, both everyday
and occasional programmers recalled the highest percentages
of core structural tokens. Occasional programmers also re-
called significantly higher percentages of these tokens than
non-programmers. This suggests that that both everyday and
occasional programmers likely use schema to chunk critical
structural components, but that occasional programmers prob-
ably do so somewhat less successfully. Specifically, occasional
programmers may need more assistance with separator tokens.
Non-programmers do not have knowledge to support recall of
structural tokens and fall furthest behind in recalling construct

TABLE II. COMPARING BLOCKS AND TEXT, * p < .05,

Token Everyday Occasional Non
Text Blocks Text Blocks Text Blocks

Separators ns ns 19% 33%* ns ns
Construct 68% 50%, p=0.05 64% 43%* ns ns
Conditional ns ns 10% 24%* 5% 21%*

† All other tokens were non-significant

TABLE III. AVERAGE % OF TOKENS RECALLED BY EVERYDAY
PROGRAMMERS AND DIFFERENCES BETWEEN GROUPS. ∗p < 0.05

Token
Type Everyday %Everyday−

%Occasional

%Everyday−
%Non

%Occasional −
%Non

All 64% 12%* 26%* 14%*
String 74% 16% 25% 9%

St
ru

ct
ur

al

Keywords 71% 12%* 30%* 12%*
Construct 61% 5% 34%* 29%*
Scope 61% 16%* 24%* 9%*
Object 52% 15%* 23%* 8%*
Separators 52% 21%* 28%* 7%*
Actions 46% 13%* 22%* 9%*

M
ea

ni
ng

Variables 50% 15%* 23%* 8%
Operators 56% 30%* 35%* 5%
Conditional 36% 19%* 23%* 4%
Enum 39% 18%* 15%* −4%
Numeric 34% 21%* 21%* 0%
Unit 21% 16%* 16%* 0%

A
PI Accessors 24% 2% 5% 3%

Functions 13% 8% 9% 1%

tokens. While many informal occasional programmers likely
have some exposure to constructs, non-programmers who do
not know how the constructs work will not realize their
importance to the code snippets.

Structural tokens, specifically construct and separator to-
kens, were two of the differences between blocks and text
code. Both everyday and occasional programmers recalled
significantly more correct construct tokens for text than block
code, likely because they were more familiar with the terms
used in the text language (see Table II). In the block
code, some constructs have been modified to clarify meaning,
such as repeat 3 times. Blocks code also had far fewer
separators, which may have helped less experienced pro-
grammers remember them. Occasional programmers recalled
significantly higher percentages of correct separator tokens for
block snippets than text snippets (see Table II). Separators can
be critical for indicating structure and scope, so it may be
especially important to consider the role of separators in code
snippets.

2) Meaning detail tokens: Everyday programmers
recalled many of the specific details that completed the
construct and action statements in their first recall attempt.
However, occasional programmers often recalled at rates
similar to non-programmers (see Table III-Meaning). The
variables, operators, and conditionals specify details, such
as the iteration in a loop like Integer index = 0;
index<3; index++ or the condition for a while loop
!this.woodenBoat.isCollidingWith(this.iceberg).
The enums, numbers, and units specify the details of
actions, such as in move(FORWARD, 5.0 meters), in
which FORWARD is the enum. These tokens require a deeper
understanding of the code snippet functionality in order to be
memorable. Many of these tokens are also similar, making
them somewhat difficult to recall correctly through direct
memorization. For conditionals, one meaning detail token
type, the blocks format may have helped occasional and
non-programmers focus on or remember the details, possibly
due to the natural language conditionals in block snippets.
For example, text snippets use isCollidingWith, while the



TABLE IV. CORRELATION BETWEEN TOKEN TYPES AND LINE NUMBER

Token Everyday Occasional Non-programmer
All − .26*** − .37*** − .37***
String − .55*** − .67*** − .57***
Construct − .19* − .42*** − .32
Separators − .25*** − .33*** − .32***
Action − .21*** − .28*** − .32***
Scope − .25*** − .27* − .29***
Object − .24*** − .25*** − .25***
Variable − .32*** − .42*** − .30***
Operators − .26* − .33*** − .29***
Conditional − .37* − .48* − .44*
Numerical ns − .13 ns
Unit − .23* ns ns
Accessors ns − .19* ns

†Keywords,Enum,and Function : no significant correlations.
†∗p < .05∗∗∗p < .001

block snippet uses is near. This aligns with the recall rates
for string tokens, as discussed next.

3) Natural language tokens: All of the programmer groups
recalled surprisingly high percentages of string tokens. In this
context, string tokens are the natural language arguments for
say and think actions, like a penguin that says “uh oh”.
We might expect occasional and non-programmers to recall
these with ease, due to their simplicity, natural language,
and uniqueness amongst the other code tokens. However,
we did not expect everyday programmers to focus on string
tokens, which are often less critical to the overall animation
than structure or meaning details. Due to the storytelling
nature of these code snippets, string tokens provide contextual
information related to the overall animation, possibly making
them more important to everyday programmers as well. The
position of string tokens may have also been a factor, as many
of these tokens were located at the beginning of the code
examples.

4) Beginning of the code snippet: Participants recalled
tokens closer to the beginning of the code snippet more than
lines further down, with a few exceptions. All participants
had significant negative correlations between the line number
and the percentage of token types recalled (see Table IV).
This indicates a relationship between the line number and
recall. Everyday programmers often had weak correlations
(< .3), while occasional and non-programmers often had more
moderate correlations (.3 < r < .5). Some token types had
no correlations, either because they only occurred at the
beginning of examples, like keywords, or because participants
rarely recalled them. Only occasional programmers recalled
more numbers and accessors, such as getRightHip, earlier
in the example than later. This may indicate that occasional
programmers focused on less important tokens due to their
location.

V. LESSONS LEARNED: RECOMMENDATIONS FOR
IMPROVING CODE EXAMPLES

The results of this study indicate three main parts of an
example that likely affect focus and recall: 1) the elements in
the code themselves, 2) the overall presentation, and 3) the
emphasis or de-emphasis of specific elements.

Our results indicate that several ways of selecting or de-
signing example code could help draw programmers’ attention
to important elements: 1) position important elements early,
as this is where programmers paid the most attention, 2)
minimize similar identifier names to make them easier to
distinguish, and 3) limit natural language string use within
code, as they can draw undue attention. An expert could
likely make these decisions, but example code could also
be selected algorithmically using these constraints. Even with
well-selected code, programmers will likely still need further
support.

Occasional and non-programmers had the most difficulty
with structural tokens and tokens that filled in the meaning of
the core code structure. Helping less experienced programmers
discover, focus on, and understand these critical elements of
code snippets will be essential in enabling non-experts to
effectively use example code. For instance, less experienced
programmers had significant trouble remembering separators
and their correct location. Reducing the focus on separators
unrelated to the critical elements of the example might help
everyday and non-programmers notice and remember the
important separators.

In addition to the high-level structure and meaning, some
examples may utilize specific elements that programmers
should or should not pay attention to. When these critical
details occur later in an example, programmers would likely
benefit from help noticing those elements. Furthermore, some
examples may involve many unique details which could dis-
tract a non-expert. Newer programmers would likely benefit
from having these either removed or de-emphasized.

VI. THREATS TO VALIDITY

Since we wanted to derive possible directions for further
exploration and design, we chose to risk a possible higher
false positive rate, rather than a higher false negative rate in
our statistical analysis. While we did not correct for multiple
comparisons, the small number of comparisons and the fact
that we chose the comparisons in advance does reduce our
risk of a high false positive rate.

VII. CONCLUSION

This study explored what everyday, occasional, and non-
programmers focused on and recalled for code snippets. Pro-
grammers ranging from experts to complete novices rely on
code snippets to learn new programming skills and to attempt
to accomplish programming tasks outside of formal education
contexts. By exploring what programmers focus on and recall
in code snippets, we can recommend ways to design code
snippets to better support the growing number of programmers
learning through examples. We provide recommendations for
improving example code, but leave the application and evalu-
ation of these recommendations to future work.
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