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Abstract—Though support for learning computing in schools is
growing, many children still begin learning to program without
formal support in open-ended programming environments. While
researchers have evaluated the final code of these types of
projects, we know little about how users’ behaviors and usage
of support tools relate to understanding. We ran a study where
participants had open-ended programming time with access to
one of two support tools: suggestions or tutorials. Participants
then completed four tasks which required understanding of the
suggestion or tutorial content. We did not find an effect of
suggestions compared to tutorials on knowledge application, but
we did find that many participants who performed better tended
to explore more of the interface, code behaviors, and support
tools. Our results suggest that future tools for encouraging
learning during open-ended programming should likely focus on
supporting users who tend to explore less on their own.

Index Terms—Novice programming, support tools

I. INTRODUCTION

Introduction to programming often still takes place with
minimal or no formal instruction in one of the many con-
structionist novice programming environments. Outside of
classrooms, tools like Scratch [23], App Inventor [21], Snap
[27], Alice [5], and Looking Glass [8] fundamentally rely
on the interest, motivation, and exploration of their users.
These systems have demonstrated immense success in terms
of engagement [16]. Yet most of the research attention for sup-
porting young novice programmers has focused on developing
concrete pedagogical activities, rather than supporting learning
when users have control of their own activities. Our work
aims to understand what kinds of open-ended coding behaviors
predict understanding or learning and the potential implica-
tions for designing tools that support independent learning.
Specifically, this paper answers the previously unaddressed
question of how novices’ interactions with support tools,
the programming environment, and code blocks during open-
ended programming relate to their abilities to demonstrate
knowledge application through tasks.

To date, research on open-ended programming has focused
on analysis of users’ final shared projects, rather than their
behaviors. These evaluations can help researchers and edu-
cators gauge learning and also help learners understand their
own progress [18]. Users’ final code can begin to indicate
learning, but cannot take into account the whole context of the
user’s behaviors or their ability to use code blocks effectively
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on specific tasks [17], [25], [32]. In order to design tools
to support novices in open-ended programming, we observed
novices’ coding behaviors, interactions with the programming
environment, and usages of two existing support tools.

To understand how novices interact with support tools dur-
ing open-ended programming, participants could access one
of two support tools: suggestions or tutorials. These options
represent two of the most common and effective existing sup-
port tools for novice open-ended programming. Many novice
programming environments provide tutorials. We designed our
tutorials based on Scratch 2.0, which provided short videos
demonstrating the steps to create a simple animation. Recent
studies have also shown that suggested code examples can be
highly effective in encouraging novices to explore and add
new code blocks during open-ended programming [11]-[13].
However, no research has yet explored how users’ interactions
with these support tools relates to their behaviors and abilities
to apply their knowledge on tasks.

We ran a study in which young novice programmers
had time for self-directed open-ended programming followed
by knowledge application tasks. During part of this open-
ended programming time, participants either had access to
suggestions or tutorials that demonstrated use of two code
blocks: simple parallel execution Do together or the basic
loop Repeat loop. Following the open-ended programming
time, participants worked on four knowledge acquisition tasks.
In order to correctly complete the tasks, participants had to
correctly apply Do together and/or Repeat loop code blocks to
modify animations. These two code blocks are most commonly
used by early novice programmers and are most likely to be
accessible in the relatively short span of a lab study.

We believe that this is the first work to look at the
connection between young novice programmers’ open-ended
programming behaviors and their abilities to apply knowledge
to complete tasks. Our results indicate that those who applied
constructs more correctly on tasks likely explored the available
code blocks more often and interacted more often and deeply
with code constructs and support tools. Supporting novices
who explore less on their own may encourage more learning
in open-ended novice programming environments.



II. RELATED WORK

Recently, researchers have begun to evaluate and build
tools to support open-ended programming. A variety of tools
support and analyze novice programming through specific
tasks. This work is most related to research surrounding open-
ended programming. We build upon the work in: 1) modeling
computational skill, 2) analysis of code and behavior, and 3)
supporting open-ended novice programming.

A. Models of computational skill

Some methods of evaluating novice code projects are rooted
in theories of computational thinking. The assessment of
computational thinking is still a highly active research area,
as described by Basso et al., though primarily in classroom
settings [2]. Evaluations of open-ended programming have re-
cently begun to leverage computational thinking concepts and
frameworks [18]. Because analyses of code projects typically
take place at a large scale and long after the creators have
completed the projects, they focus on Brennan and Resnick’s
computational thinking concepts and cannot take into account
practices and perspectives [4]. Our work begins to look at
novices’ behaviors, which more closely align with practices
and meta-skills discussed in computational thinking literature.
These elements of computational thinking have yet to be
explored outside of a classroom context.

B. Analysis of code and behavior

Several studies have looked at the overall skill progres-
sion of programmers as a group by evaluating novices’ final
projects. Some have looked primarily at the numbers and types
of blocks in users’ final projects and have found an upward
trend in the number of types of code blocks programmers use
over time [17], [25], [32]. Researchers have also found that
many programs are relatively short, rarely use abstractions,
and suffer from code smells [1], [10]. Another study of the
specifics of open-ended code looked at naming of variables
and procedures, finding that they may be problematic [28].
Issues in blocks-based code like code smells can have a real
negative impact, especially when they are shared to online
communities, where other novices may try to reuse code [30].

Very little work has investigated the behaviors of novices
during open-ended programming. Researchers have begun to
profile general interaction styles and found high-level differ-
ences in programming approaches. Groups of users sometimes
focus on visual, story, or animation elements in Alice [6].
Some work has looked at novice behaviors during open-ended
assignments, such as exploring the ways students tinker [7].
This differs from open-ended programming because assign-
ments still provide a goal that the student needs to accomplish.
We expect novices’ behaviors and needs for support for
learning to be very different when the novice has complete
control over their goals.

Instead of focusing on novices’ final code projects, we
analyze their specific behaviors, regarding the code, the in-
terface, and the support tools, and how those behaviors relate
to novices’ abilities to apply their knowledge in certain tasks.

C. Supporting open-ended novice programming

Open-ended programming environments typically provide
static support through a set of available tutorials or documen-
tation and recent systems aim to actively support open-ended
programming. Dr. Scratch, Quality Hound, and CodeMaster
enable novices to evaluate their own programs to determine
their computational thinking skills or identify potentially
problematic code smells based on rubrics [18], [19], [29],
[31]. The Example Guru also analyzes novice program code
incrementally during the programming process and provides
a list of suggested code snippets, which novices access more
than static support [11]-[13]. Researchers have also developed
a wide variety of ways of supporting novice programmers
working on specific and open-ended tasks [14], [15], [22],
but they rely on knowledge of the tasks in order to nudge
the novice toward a solution. None of these tools takes into
account users’ behavior and interactions.

As part of the push for CS education in schools, much of
the work on evaluating and supporting novice programmers
has focused around curricular and task-based contexts. So far,
evaluation of open-ended novice programming has focused on
novices’ final code projects. We are unaware of research that
looks at how novices’ coding behaviors and interactions with
support relate to their skill or how those behaviors impact
open-ended novice programmers’ needs for support.

III. SYSTEM

To capture open-ended programming, we chose to have par-
ticipants use Looking Glass because many children do not have
exposure to it, compared to well known systems like Scratch.
Due to this, we expect novices’ behavior during the study
may contribute more to their end performance. Throughout
their open-ended programming we wanted them to have the
best available kinds of support: tutorials and suggestions. Most
systems today use tutorials to provide support. A recent study
suggests that code-based suggestions may be more effective
[13]. We describe Looking Glass and both forms of support.

A. Looking Glass Programming Environment

Looking Glass is a blocks programming environment de-
signed for children to make 3D animations, based on Story-
telling Alice [16]. It contains many similar functionalities as
other blocks programming environments for novice program-
mers. Looking Glass users code by dragging and dropping
blocks (see Fig. 1). Looking Glass has a unique animation
API that includes methods such as move, turn, or resize and
also contains code concepts like a simple parallel execution
block Do together and a simple Repeat loop. Looking Glass
has a built-in documentation feature accessible from a ‘more’
button on each code action block added to a program (not on
Do together or Repeat loops).

B. Code-Based Suggestions

Suggestions provide ideas for ways a user could integrate
a certain code block into their program. They provide two
examples of a specific animation using that code block. We
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Fig. 1. (A) Looking Glass. (B) Suggestion list. (C) Accessed suggestion. (D)
Two code examples. (E) Code snippet, which users can hover over to learn
more. (F) Example code execution video.

describe the interface, the rules that trigger the suggestions,
and the set of suggestions we used.

1) Suggestion interface: Users can access suggestions from
a list near the code block menu (see Fig. 1-B). Fig. 1-C shows
a suggestion a user has accessed for ‘Making a character move
diagonally’. It has two examples: 1) a panda moving forward
and up at the same time, and 2) a boy moving backwards and
down at the same time. Both suggestions have a title and a
snippet of example code. Mousing over the code block shows
a description of how the code works and where to find the
code block in the code menu. Users can execute the code and
view the output below the code (see Fig. 1-F).

2) Suggestion rules: When a user executes their code, the
system runs ‘rule’ scripts, which check the code for conditions
that would trigger suggestions. Each suggestion has a rule for
when it should trigger. For example, for the suggestion ‘Make
a character move diagonally’, the rule checks a user’s code
for two ‘move’ code blocks in sequence which have the same
object (like panda) and have two different directions (up and
forward, for example), but no Do together code block.

3) Suggestion and rule set: The set of suggestions and rules
in this study were generated based on a repository of programs
and a semi-automatic method from existing research [13]. This
process resulted in 7 suggestions for the Repeat loop and 73
suggestions for the parallel execution blocks.

C. Static Tutorial Set

The static set of 13 tutorials provided content demonstrating
how to use the Do together and Repeat loop code blocks.
Fig. 2-B shows the list where users could access the tutorials,
which is visually almost identical to the list of suggestions.
When a user accessed a tutorial from that list, they could
view a short video for each step in creating a short animation
and short text explanations, as shown in Fig. 2-A. We based
the design of our static set of tutorials on Scratch [26]. We
created the content for the tutorials based on a set of previously
successful hand-authored suggestions [11].
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Fig. 2. (A) Accessed tutorial. (B) List of tutorials, which always has the same
set of 13 tutorials. (C) Short video that shows how to complete the step. (D)
Text instructions. (E) Button to go to the next step.

IV. EVALUATION

We ran a study in which participants had time for open-
ended programming and then completed knowledge applica-
tion tasks. We use this study to answer three questions: 1)
did interactions with or availability of suggestions relate to
knowledge application, 2) did behaviors during open-ended
programming relate to knowledge application, and 3) did code
use and interaction during open-ended programming relate to
knowledge application?

A. Study Protocol

The study had five phases: 1) default open-ended, 2) support
intro tasks, 3) supported open-ended, 4) knowledge application
tasks, and 5) surveys.

1) Default Open-Ended: The fifteen minute default open-
ended phase enabled us to gather data on the types of code par-
ticipants used before having access to tutorials or suggestions.
Participants could create any animation they wanted using one
or more of nine pre-made scenes. We used pre-made scenes,
designed through pilot studies, because in the scope of a short
lab study, we wanted participants to focus on coding rather
than creating the scenes. If a participant requested help with
the mechanics of blocks coding, a researcher demonstrated
how to drag and drop code blocks and execute code.

2) Support Intro Tasks: The two five-minute support intro
tasks aimed to ensure that participants were aware of sug-
gestions or tutorials, depending on the participant’s condition.
Each task asked the participant to modify an API method call.
The corresponding suggestion or tutorial demonstrated how to
complete the task. If a participant got stuck on a support intro
task, a researcher guided them to complete the task using the
available help. If a participant completed a task without the
suggestion or tutorial, the researcher demonstrated how they
could have accessed the support tool to solve the task.



3) Supported Open-Ended: The goal of the thirty minute
supported open-ended phase was to understand how partici-
pants would choose to access and interact with suggestions
or tutorials. Participants had access to suggestions or tutorials,
depending on their condition. Suggestion participants received
a set of suggestions based on their code. Tutorial participants
had access to 13 tutorials. We told participants that they were
not required to access or use them. We first asked participants
to create a performance animation using a specific template
with dolphins underwater. We gave participants this prompt
because in pilot studies, some participants had a hard time
generating ideas. They then could choose from the same set
of pre-existing templates as the default open-ended phase to
create their own animations. Participants could choose when
they had completed any animation and move on to another
animation, return to a previous animation, or end the phase.

4) Knowledge Application Tasks: Participants completed
four three-minute tasks that evaluated their understanding
of the Do together and Repeat loop code blocks. The four
tasks asked participants to create specific animations but did
not provide instructions. To successfully complete the tasks,
participants had to know where to place the following code
blocks for each of the four tasks: 1) Do together, 2) Repeat
loop, 3) Do together nested within Repeat loop, and 4) Repeat
loop nested within Do together. Participants received these
tasks in an order balanced across participants. Based on our
pilot study, we minorly adapted these tasks from a study
evaluating these concepts [9].

5) Surveys: Participants filled out a survey about their age,
gender, and programming experience. Participants filled out a
survey at the end of the study about their experience coding
and the usefulness and understandability of suggestions or
tutorials.

B. Participants

We recruited 62 participants from a local science-focused
mailing list. We had a pilot study with 18 participants to
resolve issues with the materials and methods. The remaining
44 participants completed the final study. We exclude four
participants: three because they had participated in similar
studies with our lab and one due to technical issues. This
paper presents the results from the remaining 40 participants
aged 8 to 15 (M = 11.2,SD = 1.6), of whom 24 were
male and 16 were female. Gender, age, and programming
experience have, in existing work, affected early learning
in coding [9]. Although we attempted to recruit participants
with no or minimal programming experience, upon arrival, we
discovered that many children had more. In order to attempt
to get fair results across conditions, we did our best to balance
the gender, age, and self-reported programming experience
across conditions. Both conditions had average ages of 11.2
and 11/20 participants with minimal (less than 3 hours) or no
programming experience. The suggestion condition had 9/20
females, and the tutorial condition had 7/20 females.

V. DATA AND ANALYSIS
To understand how participants’ behaviors during open-

ended programming corresponded with their ability to apply
knowledge within tasks, we analyze: knowledge application,
open-ended programming behaviors, and demographics. We
do not analyze the support intro tasks because they were
informational for the participants, rather than for evaluation.
A. Knowledge Application

Our tasks aim to evaluate participants’ ability to apply their
knowledge of Do together and Repeat loops. We scored tasks
using rubrics for each task and also broke users into non-,
low-, mid-, and high-performers for more in-depth analyses.

1) Scoring rubric: We designed rubrics to score partici-
pants’ attempts for the four tasks. For each task, participants
received points for adding correct Do fogether and Repeat
loop code blocks, moving the correct code blocks into the Do
together and Repeat loop code blocks, and not having extra
code blocks within the constructs or added to the program as
a whole. These scores can be calculated objectively, as they
are merely a count of the correct number and placement of
code blocks. The tasks scores are represented as percentages
of the total number of available points for that task.

2) Performance groups: To explore how coding behavior
and suggestion and tutorial interactions relate to knowledge ac-
quisition, we split users into four groups based on performance
on tasks: non-performers, low-performers, mid-performers,
and high-performers. We did this because we noticed there
were distinct ways participants performed: the twelve non-
performers added no correct code blocks to any of the four
tasks; the eleven low-performers had at least one correct code
block added to at least one task, but none fully correct; the
eight mid-performers all had exactly one task correct, which
involved only the Do together code block; and the nine high-
performers had at least two tasks fully correct.

B. Open-ended programming behaviors

We analyze both open-ended phases together for this paper
to provide more data about how participants interacted with
the interface and code in addition to the support tools. We
collected and analyzed two types of data: code interactions
and interactions with the programming environment.

1) Code interactions: We recorded the Do togethers and
Repeat loops participants used, as the suggestions and tutorials
introduced these and they are the concepts the tasks test. For
these blocks, we collected: 1) how many each participant used
during open-ended programming, 2) how many times they
made code changes within the blocks, and 3) how often users
nested these code blocks within each other or within other
code blocks.

2) Interface Actions: We collected the segments of users’
actions during open-ended programming and the total time
each user spent performing each type of action. Table I lists
and describes the actions we collected. We recorded the time
as the time the user started doing an action of that type until
the time they did an action of a new type. If the time recorded
was less than a second, we logged it as one second in order
to account for the user having taken the action.



3) Support actions: We wanted to explore whether different
ways of interacting with support tools may have had a rela-
tionship with knowledge application. We captured the specific
ways users interacted with suggestions and tutorials. This
included whether users scrolled through the lists of suggestions
or tutorials, when they opened them, and when they closed
them. For suggestions, we also recorded whether they executed
the example code (tutorial examples executed automatically),
and whether they switched between the two examples. For the
tutorial, we measured whether users clicked to switch to other
steps within the tutorial.

C. Demographics

We captured participants’ age, gender, and programming
experience. Each of these features has the potential to impact
task success. Age during middle school can have an impact on
task performance due to critical changes that occur in abstract
processing [20]. Researchers have found differences in how
males and females complete computing tasks [3]. Different
types and lengths of programming experience could affect
whether participants already knew programming concepts be-
fore starting the tasks.

D. Threats to validity

Our primary threat to validity is our population. Our recruit-
ment through a STEM-focused mailing list may mean partic-
ipants had more access to STEM resources than the average
8-15 year old. Participants may have answered questions about
their past coding experience incorrectly, either purposefully or
not. Though we tried to balance age across conditions, our
study included children before and after critical developmental
stages [20], which may have affected our results. Our results
may also not generalize to adult non-programmers or program-
ming environments with different types of support tools.

VI. RESULTS

To better support novices in open-ended programming, we
explored how interactions with support tools, the programming
environment, and specific constructs related to knowledge
application. Our results answer three questions: Q1) Did in-
teractions with or availability of suggestions or tutorials relate
to knowledge application, Q2) Did coding behaviors during
open-ended programming relate to knowledge application, and
Q3) Did code used during open-ended programming relate to
knowledge application?

A. QIl: Did interactions with or availability of suggestions or
tutorials relate to knowledge application?

We first analyzed whether having access to suggestions or
tutorials had an effect on task success. In order to design sup-
port for open-ended programming, we explored more deeply
novices’ interactions with suggestions and tutorials and how
this related to their success on tasks.

Tutorial Suggestion
w ~
00 =}
o ©
o
<
A N o
o o
=]
-
o

o o
e <
o o
NON- (6,6 USERS) LOW- (6,4 USERS) MID- (4,4 USERS) HIGH- (4,6 USERS)

Fig. 3. Average knowledge application scores across groups

1) Did availability of suggestions or tutorials that intro-
duced code concepts affect performance on tasks?: We did
not find a significant difference between participants who
had access to suggestions or tutorials and their abilities to
complete tasks. We used a MANCOVA with Roy’s largest root
to evaluate the effect of condition and task on task scores. We
used age, gender, and whether participants had programming
experience as covariates. Participants did not significantly
differ on task scores with condition (Roys largest root =
12, F(1,33) = 0.9,p > .1). For our demographic co-
variates, we only found an effect of age on task scores
(Roys largest root = .40, F(1,33) = 2.97,p < 0.05). We
followed up with a correlation to determine how strong of a
relationship age had with knowledge application. We found
age to have a moderate positive correlation with knowledge
application (r = 0.38,p < 0.05). This aligns with prior
findings on age and success on programming tasks.

We wondered whether there were differences in access to
or preferences about suggestions or tutorials that may help to
better explain this result. Though the number of suggestions
varied across participants since they were context sensitive, we
do not believe this affected the results. Suggestion participants
received on average 9 suggestions during open-ended pro-
gramming (SD = 4.5, range = (1,17)). Tutorial participants
had access to 13 tutorials. Participants rarely accessed more
than a few suggestions or tutorials. Participants also did
not significantly differ in their post-study survey responses
about the study or suggestions and tutorials. There was no
significant difference between suggestion and tutorial user
responses about how they perceived programming in the study
or whether suggestions were useful or understandable.

We also looked at task scores within each of the non-,
low-, mid-, and high-performing groups, as shown in Fig. 3.
After splitting into four groups, our sample sizes are too small
to determine statistical differences, but average scores across
groups may indicate future directions to explore. Notably,
the tutorial low-performers had an average score of 0.19
(SD = .1) across all tasks and participants. Suggestion low-
performers had an average score of 0.49 (SD = .2). This
means suggestion low-performers were closer to completing
tasks on average. Interestingly, much of the suggestion inter-
action was concentrated in the low-performing group. Tutorial
interactions are mainly consistent across groups, as shown in
Fig. 4.



] 11.0

m Tutorial Non (6 users)
O Tutorial Low (6 users)
W Tutorial Mid (4 users)

Tutorial High (4 users)

5.0

M Suggestion Non (6 users)

@ Suggestion Low (4 users) =2 =

N
in

AVERAGETOTAL
OPENED

o~

S
mn

AVERAGE UNIQUE
OPENED

MW Suggestion Mid (4 users)

Suggestion High (6 users)

=]
=1

AVERAGE OPENED
FROM TRAINING

135

10.3

™M
m

n
I
- - n
Sso 2 o =
=
— [ ]

AVERAGE '"NEXT' AVERAGE EXAMPLE AVERAGE SWITCHES
CLICKS (TUTORIAL EXECUTION BETWEEN EXAMPLES
ONLY) (SUGGESTION ONLY)(SUGGESTION ONLY)

Fig. 4. Suggestion and tutorial interactions by knowledge application group. Suggestion users interacted much more with the support tools, especially in the

low- and mid-performer groups.

2) Interactions with suggestions and tutorials: We explored
how participants interacted with suggestions and tutorials by
knowledge application group (non-, low-, mid-, and high-).
Each of the groups had close to even splits between the number
of tutorial and suggestion users (see Fig. 3). Suggestions
specifically may have helped low- and mid-performers. Non-
and high-performers seemed to interact with them less.

Low-performers and mid performers interacted with sugges-
tions much more than non- or high-performers. The four low-
performers who had access to suggestions opened on average
11 suggestions, executed examples on average 13.5 times and
switched between the primary and secondary examples on
average 4.8 times, as shown in Fig 4. Mid-performers only
opened on average 2.8 suggestions, but they executed exam-
ples on average 10.3 times and switched between primary and
secondary examples on average 3.3 times. Correspondingly,
low- and mid-performers rated the usefulness of suggestions as
6.75 and 5 and the understandability of suggestions as 6.75 and
6 out of 7, respectively. In contrast, non- and high-performers
had fewer interactions with suggestions after accessing them.
It’s possible that non- and low-performers began the study with
similar knowledge and those who chose to interact more with
suggestions then could begin to be able to apply knowledge of
Do togethers and Repeat loops to tasks. The high-performers
in each group likely already had some experience with the
concepts shown in the suggestions and tutorials, so they may
not have felt the need to view or interact with more of
them. Corresponding with the lower interactions, non- and
high-performers rated the usefulness of suggestions as 4 and
4.4, and the understandability of suggestions as 4.7 and 5.2,
respectively.

Tutorial participants did not display this trend as much. Mid-
performers opened on average 2.5 tutorials, compared to 0.7,
0.5 and 0.25 for non, low, and high-performers respectively.
Few participants in any group clicked the ‘next’ button to get
to a second or third step of a tutorial. The second step of each
tutorial demonstrated adding the Do together or Repeat loop
blocks, so almost none of the participants actually viewed this

within tutorials. Tutorial post-study survey responses did not
show a strong relationship with interaction: non-, low-, mid-
and high-performers rated the usefulness of tutorials as 6.8,
5.2, 4, and 5.5 and the understandability of tutorials as 5.8,
4.5, 6, and 6 out of 7, respectively.

Participants’ previous programming experience may have
been a major determining factor within the short span of our
study. Participants had only a half an hour of open-ended
programming time with access to suggestions or tutorials.
Those who saw a Do together or a Repeat loop for the first
time in our study were unlikely to master them in such a
short period of time. The huge amount of interaction low-
performers had with suggestions and their higher scores than
tutorial low-performers may indicate that suggestions benefited
those with the least programming experience who were most
willing to explore. Because low-performers did not complete
any of the tasks, they likely did not already know how to
use Do together or Repeat loop code blocks. Low-performers’
choice to interact with suggestions may be what ended up
distinguishing them from the non-performers.

B. Q2: Did behaviors during open-ended programming relate
to knowledge application?

We analyzed the relationship between time spent performing
programming environment actions and knowledge application
scores using Pearson’s correlation coefficient. We also inves-
tigated whether exploring actions related to support tool use.

Participants’ exploring actions correlated with successful
knowledge application, while program execution negatively
correlated with successful knowledge application, as shown
in Table I. We found a moderate positive correlation between
the time spent exploring the available code blocks menu and
task success (r = 0.43,p < 0.01). Use of the ‘more’ button
had a marginally significant and somewhat weaker correlation
with task success (r = 0.3,p = 0.06). The ‘more’ button
allows users to add arguments to their code like the speed of an
action. In contrast, the time participants spent executing their
code had a negative correlation with knowledge application



TABLE I
ACTIONS AND CORRELATION WITH KNOWLEDGE APPLICATION
Action Type Description Cor. w/
knowledge
application
Explored Sup-  Scrolled suggestion or tutorial list ~ r = 0.18
port
Support Interacted w/ suggestions or tutori- 7 = 0.02
als
Executed Executed their program r = —0.39%
Explored Code  Scrolled through menu of available — r = 0.43 * %
Blocks code blocks
More Clicked ‘more’ button on a code r = 0.3,p =
block 0.06
Documentation  Interacted with in-application doc- r = —0.10
umentation
Inserting Inserted a code block r=0.11
Deleting Deleted a code block r=—0.11
Undo/Redo Undid or redid a code change r=—0.21
*p < 0.05 **p < 0.01
TABLE II
SUGGESTION INTERACTION RELATIONSHIP WITH INTERFACE ACTIONS
Interaction with suggestion Correlation  Correlation
w/ exploring w/ execution
# suggestion example executions r = 0.69 x x r=—0.35
# switches between suggestion ex- 7 = 0.49x r=—0.33
amples
# Suggestions opened r=.31 r=—0.23
# Unique Suggestions opened r=.29 r=—0.18
Times went to next step in tutorial 7 = 0.48x r=—0.37
# Tutorials opened r=0.1 r=—0.26
# Unique tutorials opened r = 0.06 r=—0.32

Fp < 0.05 #*p < 0.01

(r = —0.39,p < 0.05). Those who explored more may be
‘tinkerers’, which researchers suspect may have educational
benefits and may lead to better debugging performance [3],
[24]. The negative correlation between time spent executing
code and knowledge application was surprising, as code exe-
cution might also seem to correspond with tinkering behaviors.
Executing code may be related to an ineffective type of
tinkering which distracts from more substantive behaviors [3].

Due to the correlations between exploring and executing
code with task success, we wondered whether these behaviors
related to interaction with support tools. Suggestions have
increased exploration of new code [11], [12]. The number of
suggestions or tutorials participants opened did not relate to
exploration of the programming environment, but interactions
with them did (see Table II). Executing examples had a strong
correlation with exploring (r = 0.69,p < 0.01). Switching
between examples within a suggestion also had a moderate
correlation with exploring (r = 0.49,p < 0.05). Going to the
next step within a tutorial had a moderate correlation with ex-
ploration (r = 0.48, p < 0.05). These correlations may suggest
that rather than current support encouraging exploration, they
support participants who naturally explore. Both suggestions
and tutorials themselves require some amount of exploration
and interaction in order for users to fully benefit from them.

Total time spent on open-ended programming may relate
to task success. We found a marginally significant correlation

between total time spent programming and average knowledge
application (r = 0.31,p = 0.06). Due to a technical error,
two participants spent extra time in the baseline phase (16.6
and 19.5 minutes, compared to the typical 15 minutes) and
one participant spent 44 minutes in the supported open-ended
phase (typically 30 minutes). We allowed participants to end
their open-ended time early if they did not want to keep
working on their animations. Several chose to end the 30
minute supported open-ended phase slightly early and one
participant spent 16 minutes. On average, participants spent
29.75 minutes in the supported open-ended phase (SD = 3.3).

C. Q3: Did code used during open-ended programming relate
to knowledge application?

As interactions with code blocks may be one form of
exploration of how to use them, we wanted to explore whether
users’ interactions throughout open-ended programming re-
lated to their knowledge application. We analyzed correlation
of knowledge application with: 1) final usage of code in
programs, and 2) interactions with code.

1) Do together and Repeat usage: We found a correlation
between the number of Do fogether and Repeat loop code
blocks in users’ final programs and their knowledge appli-
cation. The correlation of the sum of total Do together and
Repeat loop constructs in participants’ final projects had a
moderate significant correlation with their average task score
(r = .55, p < .001). This further supports existing literature
that has found that usage of code within a users’ program
indicates understanding or learning [19].

2) Interaction with Do together and Repeat loop blocks:
Beyond the insertion of specific code blocks, we wanted to
better understand how participants interacted with the code
blocks. We analyzed several behaviors: inserting or removing
code from the code blocks, deleting the code blocks, or nesting
combinations of the code blocks.

We measured the number of times participants inserted a
code block into a Do together or Repeat, how many times
they moved a code block into or out of one of these blocks,
and how many times they deleted a code block directly from
a Do together or Repeat block. We summed these together as
one metric of ‘interactions with the code constructs’ and found
a strong correlation between the total number of interactions
users had with Do together and Repeat blocks and average
task score (r = .61, p < 0.001). Table III-Interactions shows
the average numbers of interactions participants had with the
code blocks across the four groups.

Participants did not delete or nest many Do together or
Repeat loop code blocks, so we did not analyze whether
the numbers of these blocks corresponded with knowledge
application. However, based on groups, those with higher
knowledge application scores were more likely to have deleted
at least one of these code blocks, as shown in Table III. We
also saw a general increase in participants who nested Do
together or Repeat loop code blocks as participants performed
better on knowledge application tasks. Interestingly, the trends
in these two behaviors were very similar, as shown in the



TABLE III
INTERACTIONS WITH CONSTRUCTS

Group Total Do togethers Total Repeat Ioops Interactions # who deleted # who nested
Non-performers M=.08, SD=.3 0 0 0/12 0/12
Low-performers M=2.4, SD=3.4 M=.6, SD=9 M=15, SD=14 4/11 3/11
Mid-performers M=3.8, SD=5.7 M=.1, SD=4 M=22, SD=22 1/8 1/8
High-performers M=6.6, SD=6.1 M=.38, SD=1.1 M=50, SD=37 5/9 5/9

right section of Table III. The only break in the upward trend
was in the mid-performer group, where only one participant
deleted one Do together or Repeat loop and only one nested
them. This may be due to small sample size, especially within
the mid-performer group. Regardless, deletion and nesting of
Do together and Repeat loop code blocks is consistent across
groups. This may mean that these two behaviors relate to the
types of skills that result in successful knowledge application.

Novices’ interactions with code blocks may indicate long
before a user has completed their program how much they
know or how much knowledge they will gain. This may mean
that tools for open-ended programming can begin to adapt
to the personal needs of the programmer before they have
even completed one program. Current tools provide support
and encouragement for novices to use certain types of code
blocks, but not how to interact with those code blocks in
ways that might support deeper understanding.

VII. DISCUSSION

Future support for open-ended novice programming may be
able to personalize support throughout novices’ programming
experience based on their interactions across the programming
environment and support tools. The relationship between deep
interaction with support tools and exploration also suggests
that future tools should support non-explorers.

A. Behavior-based support

The connections between users’ behaviors and successful
knowledge application indicates that we may be able to predict
skill level or likelihood to learn new concepts before a user
has completed their project. This prediction could enable a
tool to provide a user with the amount and type of support
that will benefit them the most. The correlation between deep
interaction with suggestions and exploration of the interface
may suggest that those who explore on their own benefit from
suggestions in their current form. Those who do less exploring
on their own might benefit from other types of support which
do not require the user to explore. Adapting support based on
perceived user needs has risks, particularly in irritating users.
Triangulating users’ interactions with the interface, code and
support tools may enable accurate identification of the users
who will benefit the most from support for non-explorers.

B. Support for non-explorers

Self-directed open-ended programming requires the user
to create their own knowledge. At least some subset of the
population typically does not explore on their own. Still,
little to no support has been developed within these contexts
for those who do not explore naturally on their own. The

suggestions in this study have been one of the first systems
to explicitly and successfully encourage novices to explore
new code during open-ended programming. Participants of all
types seem to access suggestions, but access alone likely isn’t
enough to understand more complex concepts. Requiring the
user to execute the code snippet or switch between examples
forces the user to have to ‘explore’ the suggestion in order to
benefit from it.

Non-explorer open-ended programmers may benefit from
tools designed explicitly with the non-explorer in mind. For
example, these tools may: appear in relevant locations, ‘force’
deeper interactions, or demonstrate exploring behaviors. A tool
could select where to display support based on where the
novice programmer focuses the most. In our study, those who
performed better spent more time exploring code. Those who
performed worse spent more time executing code. Suggestions
and tutorials were both displayed in a scroll-able list right
above the code menu, which likely seemed very similar to
the code list. Tools for open-ended novice programming might
benefit from providing more guidance through support interac-
tions. Those who explored more tended to leverage the deeper
interactions within suggestions and tutorials compared to those
who explored less. An opened suggestion or tutorial could,
for example, require a non-exploring user to step through
the deeper interactions before closing it. Typical support
often provides static information, rather than instruction on
how to explore. Suggestions and tutorials provide examples
of how to create specific animations. Suggestions nor other
support tools, commonly provide instruction or encouragement
to spend more time trying out how the code works. Tools
directed at non-explorers might actually demonstrate the types
of exploring behaviors that other users already choose to
perform on their own.

VIII. CONCLUSION

This paper has two contributions: 1) the first exploration into
novices’ purely open-ended programming behaviors and how
those relate to knowledge application, and 2) two evidence-
based directions for support for open-ended programming.
Overall, we found that those who performed better often spent
more time exploring the available code and interacting with
code blocks. Deeper interactions with support tools also had a
relationship with exploration. We presented two implications
for designing support for open-ended, self-directed novice
programmers. Our results indicate that novices’ behaviors
during programming may provide valuable clues for adaptive
tools. Further, the design of future tools should likely focus on
how to support those novice programmers who do not naturally
explore on their own.
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