
Exploring Programmers’ API Learning Processes:
Collecting Web Resources as External Memory

Gao Gao1, Finn Voichick2, Michelle Ichinco1, Caitlin Kelleher2
1Department of Computer Science, University of Massachusetts Lowell, Lowell, MA, USA

2Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
gao gao@student.uml.edu, fvoichick@wustl.edu, michelle ichinco@uml.edu, ckelleher@wustl.edu

Abstract—Modern programming frequently requires the use of
APIs (Application Programming Interfaces). Yet many program-
mers struggle when trying to learn APIs. We ran an exploratory
study in which we observed participants performing an API
learning task. We analyze their processes using a proposed
model of API learning, grounded in Cognitive Load Theory,
Information Foraging Theory, and External Memory research.
The results provide support for the model of API Learning and
add new insights into the form and usage of external memory
while learning APIs. Programmers quickly curated a set of API
resources through Information Foraging which served as external
memory and then primarily referred to these resources to meet
information needs while coding.

Index Terms—APIs, programming, learning, external memory,
information foraging, cognitive load

I. INTRODUCTION

Modern programming relies heavily on Application Pro-
gramming Interfaces (APIs), code libraries, and frameworks.
These packaged, reusable code functionalities can ease or
enable the development of complex software systems. APIs
have become extremely popular, with new ones announced
nearly every day [1], [2]. Taking into account in-house and
external APIs, nearly all lines of code programmers write may
involve APIs [3]. Given the frequently changing landscape of
APIs, the ability to quickly learn new APIs is a critical skill for
programmers of all levels. Yet, little explicit support for API
learning is available and strategies for API learning are rarely
taught in computer science programs. Instead, programmers
who need to learn a new API often do so on the fly [4]. While
previous research has explored a variety of issues related to
learning APIs [5], [6], our understanding of how people learn
APIs is highly disjointed. To date, API learning research has
focused primarily on how people find API information on the
web and the development of improved support for finding that
information.

This paper analyzes the API learning process using a
proposed holistic model of API learning [7] grounded in
Information Foraging Theory (IFT) [8], [9], Cognitive Load
Theory (CLT) [10], and External Memory (EM) [11]. We
will refer to this model as ‘COIL’, or the Collection and
Organization of Information for Learning model. The theories
underlying COIL align with the model’s three stages, which
could take place in any order: the Information Collection stage,
the Information Organization stage, and the Solution Testing

Fig. 1. COIL (Collection and Organization of Information for Learning)
Model Overview

stage. While the model combines three well-validated bodies
of work, there has yet to be formal validation of whether
and how programmers perform the actions as described in
the model. We hypothesized that programmers’ behaviors in
the Information Collection and Solution Testing stages would
align with prior research on information foraging and testing
behavior in programming tasks. The need for external mem-
ory is a natural consequence of limited short term memory
capacity, and has been predicted in previous work [4], [12].
The use of external memory is not yet fully understood in the
context of programming. We hypothesized that programmers’
API learning behavior would include external memory use and
provide new insight into the specific patterns of use.

We ran a lab study that was both evaluative and exploratory,
to validate the COIL model, and provide new insight into
API learning process, respectively. We had seven hypothe-
ses, which we outline in the COIL model section. In the
study, thirteen participants attempted to complete a one-hour
programming task comprised of three interacting sub-tasks
using the JavaScript React library. Our results contribute new
details about the critical role external memory plays in the API
learning process. Programmers quickly collected sets of web
resources through information foraging and relied primarily
on those collected sets while editing and testing their code.

Programmers’ information seeking and development behavior
is consistent with other kinds of programming tasks.

II. RELATED WORK

This work complements research in opportunistic program-
ming, API learning, and program comprehension.

A. Opportunistic Learning

Research in the opportunistic programming space has been
one of the key areas that has explored the relationship between
information access and programming behavior. An opportunis-
tic programming style focuses on getting a working prototype
quickly rather than writing code that will be maintained over a
long period of time [4]. It is often used by people who are not
professional software developers but write computer programs
in order to achieve other goals (end-user programmers) [13].
Opportunistic programmers typically use the web for three
main purposes: to learn a new concept, to clarify and extend
their existing knowledge, and to remind themselves of the
syntax for a known concept [12]. However, a study found
that pasting of code from the web is often followed by edits,
and developers rarely test reused code [14]. This research
has discovered some of the behaviors and high-level goals
of opportunistic programmers but does not clarify a complete
model of the API learning process. Specifically, opportunistic
programming research generally doesn’t explain if and how
information is organized by the programmer or the ways
programmers store, delete, and retrieve content.

B. API Learnability

Existing research in API learnability falls into three large
groups: programmers’ experiences learning APIs, designing
APIs for learnability, and API documentation.

Researchers have worked to understand the issues that
programmers encounter when trying to learn a new API. Ap-
proaches to identifying barriers have included surveys [5], [6],
interviews [5], [6], lab studies [15], [16], and analyzing ques-
tions posted online [17]. These studies have identified similar
patterns: programmers often struggle to frame questions [15],
[17], they have difficulty integrating multiple API elements to
solve a single problem [5], [6], [15], and documentation needs
improvement [5], [6], [15]. These studies help identify issues
but do not fully capture the process of API learning.

Another approach to improving API learnability is to focus
on designing better APIs. Some researchers have focused on
evaluating the learnability of particular APIs and then identi-
fying and addressing learning barriers by modifying the API
[18]–[20]. Clarke proposed using the cognitive dimensions
framework [21] to explain the causes of a particular learn-
ability problem [22]. Other researchers have tried to determine
how to design APIs from the outset to avoid usability problems
[23], [24]. Unfortunately, not all API designers will invest the
time necessary to follow these guidelines.

Documentation is a critical, but often imperfect resource for
API learning [5], [6], [15]. Some research has identified the
properties of good documentation via usability studies [25],

interviews with programmers [26], and examining existing
documentation [27]. The resulting guidelines include ideas
like the importance of code examples and the preference for
searching for information on an as-needed basis, similar to
general programming [4], [12], [28]–[31].

While existing research in API learnability is diverse, it is
also somewhat scattershot. We know little about programmers’
processes when completing a task using a new API.

C. Program Comprehension

Research in program comprehension focuses on the cre-
ation of models that can predict and explain the process
of developing an understanding of unfamiliar code. Program
comprehension models are often empirically derived from
programmer behavior during a code comprehension task. The
models fall into three major groups: top-down, bottom-up,
and combination models. In top-down models, programmers’
understanding processes are guided by their own knowledge
of the application domain and of programming [32], [33].
In bottom-up models, the programmer constructs knowledge
of program behavior beginning with the programming state-
ments [34]–[38]. The largest group of models are combination
models in which programmers use both top-down and bottom-
up approaches [39]–[43]. Existing models do not capture the
kind of code comprehension activities that occur within the
context of API learning. Most of the research on program
comprehension has focused on understanding [33]–[37], [39]–
[42], [44] and modifying [35], [36], [39], [40], [42]–[45] short
segments of code, largely presented to programmers without
additional reference materials [33], [34], [40]–[42], [44], [45].
When programmers locate example code to comprehend in
learning an API, they often have a functional description of
what it does. Programmers may seek additional information
or experiment with executing found code as part of the
comprehension process. The combination of a known high-
level goal and access to web resources contributes to under-
explored areas of program comprehension in the literature.

III. BACKGROUND

Our work explores the validation and use of the COIL model
of API learning [7] based on three research areas: Cognitive
Load Theory (CLT), External Memory (EM), and Information
Foraging Theory (IFT). IFT has been used broadly to both
understand and provide support for information seeking while
programming. CLT has been previously applied to improve
learning resources in computer science education. The model
we explore through this paper brings IFT and CLT together in
a single context and explores the use of EM as an intermediary
between these two activities.

A. Cognitive Load Theory

Cognitive Load Theory (CLT) observes that working mem-
ory is a bottleneck in learning processes, and needs to be
managed through instructional design [46]. CLT describes
three kinds of working memory load: intrinsic load, extra-
neous load, and germane load [47], [48]. Intrinsic load is

typically not considered changeable, because it depends on
the learning task and the learner’s expertise. Extraneous load is
commonly caused by inefficiencies in the instructional process
or materials, like unnecessary information searches [49] or
needing to integrate information [47], [50]. Learners invest
(extra) germane load to support their learning processes, like
generating their own explanations [51], [52] or selecting the
principle to describe each step in the worked examples [53].
The COIL model predicts the behaviors that may lead to
high extraneous load and learning activities that require the
investment of germane cognitive load.

B. External Memory
External Memory theory describes the use of changes in the

learners’ external context to augment memory, like a reminder,
or a notebook [54]. Using external memory can potentially
lower the cognitive demand of an activity through changes
in the physical space [55] or help a user store information
in a long-term memory [11]. In the API learning process,
users may find a large amount of information. The COIL
model predicts that programmers will store this information
in external memory spaces in order to manage cognitive load.

C. Information Foraging Theory
Information foraging theory (IFT) explains the way people

search for information in terms of how animals seek food,
by looking in patches of information for potentially relevant
content [8]. Researchers have worked on ways to enrich the
target information to make this process easier, such as by
decreasing the cost of re-finding information or generating
new information searches [56]. IFT explains a critical el-
ement of API learning: information search [4], [28]–[31],
[57]. Researchers have begun to explore how IFT can be
applied to code navigation [58], maintenance tasks [59], [60],
and debugging [56], [61], [62]. We are unaware of current
applications of IFT to API learning.

IV. COIL API LEARNING MODEL

The COIL model (see Fig. 1) has three stages: information
collection, information organization, and solution testing [7].
Based on the definitions of extraneous, intrinsic, and germane
load, we can begin to classify activities that occur within the
model by the type of load that they will incur. Extraneous
load occurs when programmers are investing time in cognitive
tasks that do not directly contribute to a task. Germane load
occurs when programmers choose to invest mental effort in
understanding relevant content (e.g. reading through and trying
to describe in English what a code snippet does). Ultimately, to
support API learning, we want to reduce extraneous load and
increase the chances that programmers will invest germane
load. We briefly describe each stage and its associated hy-
potheses. Our hypotheses capture the core behaviors predicted
by the model. Thus, observing these behaviors provides basic
model validation. However, we also examine the behaviors
and the relationships between them in greater detail to generate
new insights into how learners move between the model stages
and what action sequences lead to successful code changes.

A. Model Stages

In the information collection stage, programmers design
searches targeting relevant information and evaluate the rel-
evance of the information they find. This process involves
the user performing a search, viewing the results, choosing
what to navigate to, and then attempting to find useful content
within their chosen page. We hypothesize that:

• H1: Programmers’ activities during information foraging
will include ineffective searches and discarded informa-
tion, both potential sources of extraneous load.

• H2: Programmers will invest some time in reading and
attempting to understand code and conceptual informa-
tion found through information foraging, demonstrating
some investment of germane load.

In the information organization stage, programmers will
begin to manage and try to figure out how content they found
might fit together. This process requires programmers to store
found information, retrieve it later in the task, and delete
previously stored content. We hypothesize that:

• H3: Programmers will store information in external mem-
ory, thereby reducing the amount of information they
have to hold in short term memory.

• H4: Programmers will retrieve information held in exter-
nal memory, resulting in extraneous load, particularly as
the size of external memory grows.

In the solution testing stage, programmers will attempt to
solve their task in the code context. Programmers will read
their code, edit their code, run their code, and evaluate the
results of their edits. We hypothesize that:

• H5: Programmers will store potentially relevant code
snippets within their code context, using the editor as
a form of external memory.

• H6: Programmers will incur both extraneous and germane
load as they attempt to write and integrate code, result-
ing in both new information foraging and the reuse of
information from external memory.

While the COIL model suggests the kinds of activities that
could result in extraneous and germane load, we also want to
understand the process holistically. For the overall process, we
have one hypothesis and one question:

• H7: Activities will relate to reported cognitive load.
• Q: How do programmers move between stages and their

actions?

V. STUDY

We ran a lab study to collect programmers’ behavior when
using an unfamiliar API. The study aims to validate the
model’s predictions and the model as a whole.

A. Pilot

We recruited 5 pilot participants (4 male, 1 female), with
ages ranging from 19 to 34 (M = 25.6, SD = 4.24). We used
the pilot to modify the starting code and the instructions.

Fig. 2. User Study Protocol

B. Participants

We recruited fourteen participants for our study through a
Computer Science department mailing list, but lost data for one
due to a technical error. We report data from the remaining
thirteen participants. All participants were undergraduate or
graduate students. All participants were required to have
programming experience. Our participants had a range of
experience. Five of our thirteen participants reported having
professional experience with at least one programming lan-
guage, while the other eight participants had only programmed
through coursework. Five participants had no experience with
React or JavaScript and three had used React before. Par-
ticipants had a variety of code editor preferences, including
Sublime, Atom, Visual Studio, Emacs, and Vim. Twelve of
our participants were men and one was a woman. Participants’
ages ranged from 19 to 34 (M = 21.9, SD = 4). Participants
received a $20 Amazon gift card.

C. Methods

Our study had two types of surveys, a practice task, and a
programming task, as shown in Fig. 2.

1) Surveys: At the beginning of the user study, each par-
ticipant completed a demographic survey, answering questions
about their age, gender, and programming experience.

We performed the NASA-TLX survey to measure cognitive
load [63] after the the practice task and during the program-
ming task at 20 minute intervals. For the several participants
who completed the task early, we collected the NASA-TLX
data at the end of their session even if it had not been 20
minutes since their last survey. The first step of NASA-TLX
was rating six components on a scale from 0 to 100: Mental
Demand, Physical Demand, Temporal Demand, Performance,
Effort, and Frustration. In the second step, the user is presented
with 15 comparisons of the factors in which they must circle
which of the components, such as Frustration vs. Effort, had
a larger impact on their overall workload.

2) Tasks: Participants completed one practice task and one
programming task within the Atom editor [64]. The goal of the
five minute practice task was for the user to practice using the
NASA-TLX survey. The practice task asked the participant
to answer several questions taken from a list of questions
that are ‘hard to search for online.’ In the programming task,
participants had sixty minutes to complete a programming task
using ReactJS. We selected the ReactJS API because it is
highly popular, but also complex to learn. Participants started
with the ReactJS template code from using the ‘Create React
App’ command. The task instructions asked participants to
add a textbox and a button. The button should be initially

TABLE I
MODEL AND LOG ACTION EQUIVALENCES

Stage Model Action Log Action

Information
Collection

Search, view
result

Initiate or return to a Google search

Navigate to
page

Go to a new page or return to a
page they’ve already seen

Information
Organization

Store Open a new tab
Organize Re-order tabs, attach or detach a

tab/window
Retrieve Return to a webpage, go back to a

page or restore a tab
Delete Close/remove a tab or window

Solution
Testing

Code Editing Operations in Atom
Testing Visiting the localhost URL with

output or console.log actions

disabled. When ‘friend’ is typed into the textbox, the button
should become enabled. We designed this task to have multiple
components that users would need to make interact, as this is a
known barrier in API learning and use [65]. Participants could
use a web browser to search for information at any time. We
asked participants to use the ‘think aloud’ protocol.

VI. DATA AND ANALYSIS

We collected log data, cognitive load ratings, and screen
and audio recordings. We focus on the log data and cognitive
load ratings, as in many of the audio files, participants did not
think aloud consistently or clearly.

We built a logging system to track participant actions across
their browser and text editor. The logging system captures
events in the browser and the Atom text editor. For the web
browser, we logged 48 types of actions, such as “click back
button,” “copy”, and “scroll.” For the editor, we logged 17
types of actions, such as “edit,” and “paste.” We used the log
files to analyze participants’ actions, sequences of actions, and
interactions with external memory. Table I shows which log
actions we associated with each of the actions from the model.

The NASA-TLX data provides an overall score on a scale
from 0-100 for cognitive workload, as well as scores for each
of the components. Those scores are then multiplied by a
number 0-5 based on how participants ranked the importance
of each component, resulting in potential scores for each
component from 0-500. We analyzed the mental effort and
frustration of participants over time, as we expect these to
best reflect germane and extraneous cognitive load.

VII. RESULTS

Overall, participants’ actions were consistent with the COIL
model predictions. Fig. 3 shows a visualization of program-
mers’ transitions between actions in the model. We begin by
answering our overall question about the COIL model as a
whole and then explore our hypotheses H1-H7.

A. How do programmers move between stages and their
actions?

Fig. 3 shows the average frequency of participants’ action
sequences, separated by COIL model stage. Stage transi-
tions were driven by the completion of information foraging
episodes or new information needs that arose during editing.

new page

new tab

return backorganize

copy edit test

close

search

50x
10x

2x

Stages

Information Organization

Information Collection

Solution Testing

Average Frequencies

Fig. 3. How participants commonly transitioned between actions. Arrows
show transitions that participants performed at least once on average. Arrows
exit the bottom of the source action and enter the top of the destination action.
Dashed edges are from information collection to solution testing.

Participants typically moved out of information collection
after viewing a new page, either because they were ready to
edit their code or because they returned to a page that they
had already seen. If participants were ready to edit their code,
they ‘skipped’ the information organization stage and directly
went to solution testing (see the dashed lines in Fig. 3). Others
viewed existing webpages (return in Fig. 3), by switching tabs
or navigating back to previous pages they had seen.

Programmers most commonly returned to information col-
lection from a previously viewed page as part of a larger
information foraging process or after testing their code (see
Fig 3). Searching after testing suggested that programmers: 1)
accomplished a goal and needed information for a new goal,
or 2) needed more information related to their current goal.
Participants mainly returned to search from testing or after
only a brief stay on a previously viewed webpage (77% were
less than 18 seconds and 40% were less than 6 seconds).

B. H1: Programmers’ activities during information foraging
will include ineffective searches and discarded information,
both potential sources of extraneous load.

Extraneous load can arise from activities that do not directly
contribute to the learning task. During information search, this
can include ineffective searches and the evaluation of off-task
information. We found evidence of both. On average, 15.6%
of participants’ searches led immediately to new searches
(SD = 8.3%), suggesting that the searches did not yield infor-
mation worth exploring. Additionally, 6.2% of new page visits
led immediately to a search (SD = 5.4), suggesting that the
found information was not usable. 15.2% of new page visits
were followed by a back navigation (SD = 14.8%), which fre-

TABLE II
NUMBER OF UNIQUE WEBSITES VISITED AND PERCENTAGES OF EACH

TYPE

Unique
Pages

% React
Doc.

% Q&A % Other % Emu-
lator

% Video

M 24 27% 33% 32% 9% 1%
SD 11 14% 18% 19% 10% 4%

quently returned a user to a search (M = 75.2%, SD = 40%).
While it is clear that programmers did invest some extraneous
load in attempting to locate relevant learning resources, it is
notable that they were more often successful. Nearly 85% of
searches returned results with links that programmers visited.
Programmers’ success in finding relevant resources is notable
because many opportunistic programming support tools focus
on decreasing the costs of this initial foraging process.

C. H2: Programmers will invest some time in reading and at-
tempting to understand code and conceptual information found
through information foraging, demonstrating some investment
of germane load.

Programmers may experience germane load when they in-
vest extra effort in attempting to understand material related to
their learning task. Participants in our study utilized a variety
of different web source types (see Table II) including three
types of static webpages: official React pages, Q&A pages
like Stack Overflow, and ‘Other’, which refers to the myriad
of other web resources like W3 schools or blogs. Seven of the
thirteen participants used code emulators where they could
interact with code, an activity that likely encouraged more
code comprehension. Prior work in Cognitive Load Theory
suggests that the content presentation may impact both the
extraneous and germane load that learners invest. While the
COIL model does not directly address this, further study of
the kinds of load that arise in using these different resources
is an important direction for future study.

D. H3: Programmers will store information in external mem-
ory, thereby reducing the amount of information they have to
hold in short term memory.

Participants in our study made significant use of external
memory, largely in the form of web resources kept open using
web browser tabs. Participants opened between 8 and 39 new
tabs (M = 21.1, SD = 9.1) not including the website they
were testing over the course of their session (see Fig. 5).
Participants were more likely to open new tabs than to close
tabs. Nine of the thirteen participants closed tabs they had
opened and closed on average 6.65 tabs (SD = 7.74 tabs).
Five participants closed between 10 and 25 tabs and eight
participants closed fewer than 10 tabs. The hesitance to close
tabs may suggest that participants view the potential cost of re-
finding information as higher than the cost of keeping poten-
tially irrelevant information. There is evidence that concerns
about needing information later are well-founded. In 22.6% of
all search → web sequences, participants re-loaded a webpage
from the search, suggesting that participants had closed a
webpage that it turned out they needed later.

Fig. 5. Tabs open over time

E. H4: Programmers will retrieve information held in external
memory, resulting in extraneous load, particularly as the size
of external memory grows.

Participants in our study frequently returned to stored web-
pages. Participants returned to any individual page on average
4.3 times (SD = 5.7) and viewed an average of 68% of
the webpages more than once (SD = 14%). In fact, on
average, 51.7% of web sessions included only stored content
(SD = 13.8%). While there is evidence that participants are
revisiting stored pages over the course of their tasks, there
is also evidence that this process is inefficient. One of the
most common transitions from a previously viewed page is
to another previously viewed page. On average 71.1% of the
transitions from one previously viewed page to another took
less than 5 seconds (SD = 20.4%), suggesting that partici-
pants flipped through stored pages to locate needed content.
Three participants additionally spent some time attempting to

organize their external memory by moving open tabs, splitting
tabs off into a separate browser window, or re-attaching a
tab back into a browser window. Taken together, participants’
behavior suggests that support in organizing and accessing ex-
ternal memory could potentially improve the learning process.

F. H5: Programmers will store potentially relevant code snip-
pets within their code context, using the editor as a form of
external memory.

Participants rarely used the code context as an external
memory space. When participants copied code from the web
into their programming environment, they almost never left
it in their code commented out. Instead, participants often
deleted code they had copied and pasted in totality (see
Fig. 4)). This suggests a preference to keep only code per-
ceived as good in the working copy. Programmers may also
want to maintain easy access to the context of code examples.

G. H6: Programmers will incur both extraneous and germane
load as they attempt to write and integrate code, resulting in
both new information foraging and the reuse of information
from external memory.

To understand the process of integrating found code, we fol-
lowed the histories of pasted blocks of code of one line or more
from their initial copy through either their last modification or
deletion. We tracked three types of changes: 1) reformatting
changes such as white-space and syntax errors that did not
change the intended algorithm, 2) modification changes that
did change the intended algorithm, and 3) undo/redo that
navigated through previous code states. In all, ten of our
thirteen participants copied and pasted code from a webpage
into their own code (see Fig. 4).

paste
whole

undo/redo

reformat

paste
partial

delete delete
via undo

modify

paste
whole

undo/redo

reformat

paste
partial

paste
is kept

5x
1x

0.2x

Average Frequencies

modify

A C

B

D

kept pastes

deleted pastes

paste
whole

paste
partial

reformat modify undo/redo

0

0.5

1

1.5

2

0

0.5

1

1.5

2

localhost

web

av
er

ag
e

fr
eq

ue
nc

y

Fig. 4. Sequences of edits made to pasted blocks of code. (A) shows edits made to pastes that remained in the file, (D) shows edits made to pastes that
were eventually deleted. Transitions that were performed at least three times across all participants are represented as arrows that exit the bottom of the
source action and enter at the top of the destination action. (B) and (C) show edit actions that occurred immediately preceding intermediate browser sessions
involving either the live application testing tab (localhost) or other tabs (web).

The results support our hypothesis. Of the 58 code snippets
pasted in, 37 were ultimately deleted, suggesting that the ef-
forts invested in these snippets were largely extraneous. More
broadly, it suggests that programmers may struggle to identify
which code snippets they find are likely to be helpful. In
looking at code that was ultimately deleted, common problems
included selecting code that used a different programming
style than that of the current program (React supports both
a compositional style and a style based on inheritance) and
placing code incorrectly (e.g. placing HTML code in Javascript
or vice versa). Both behaviors suggest that the programmers
in these cases did not understand the code that they copied in.

One of the ways programmers can invest germane load
is by attempting to self-explain the functionality of a code
snippet. Self-explanation would enable programmers to more
successfully identify the pieces of a code snippet relevant to
their task. Accordingly, we divided the code snippets into two
groups: whole and partial. Whole snippets were those where
the programmer took a complete code snippet from a web
resource. Partial snippets represent cases where a programmer
selected a subset of lines from a code snippet to copy in. It
is notable that partial snippets were more likely to be retained
as part of the solution: 44% of partial examples vs. 27% of
complete examples remained in programmers’ final version
of their programs. We found a similar pattern in editing,
which would also require some self-explanation to occur.
52% of edited pastes vs. 16% of unedited pastes remained
in programmers’ final version of their programs.

H. H7: Activities will relate to reported cognitive load

We found that participants’ mental effort and frustration
remained relatively stable throughout the task (see Fig. 6).
Consequently, our results do not suggest a clear relationship
between programmers’ activities and their reported cognitive
load. We elaborate further in the discussion.

VIII. LIMITATIONS

This study had two main limitations: our chosen API and
population. We used the React API, which may make our
results more applicable to web APIs than other types. Our pop-
ulation was also small and limited to students whose behaviors
may not generalize to expert professional programmers. We
only had one female participant and had three participants
who had some React experience. Those three participants
completed the task quicker than sixty minutes, which could
have impacted the number of actions they took. Due to the
exploratory nature of this study, we believe these factors did
not have a significant impact on our findings.

IX. DISCUSSION

A. The Use and Inefficiency of External Memory

Prior work has established that information seeking is an
integral part of many kinds of coding tasks today. In response,
researchers have developed a variety of tools that support
information seeking while programming. The majority of these
tools focus on helping programmers more quickly find relevant
content. Some improve the search results by identifying and
recommending new and potentially relevant search terms [66],
[67]. Others integrate information recommendation into the
code context. By looking at the programmers’ active code,
these systems can identify potentially relevant code snippets
and resources by using input and output types [68] or similarity
to code snippets in Stack Overflow questions [69], [70].

While we saw some evidence of inefficiency in identifying
appropriate information resources through search, participants
spent on average only 48% of their web sessions searching and
looking at new pages. Our results suggest the importance of
and provide new details of how programmers manage the set
of diverse web resources that they collect while working on a
programming task with a new API. Programmers quickly col-
lected a set of resources and stored these resources in external
memory using browser tabs. Programmers repeatedly returned

Fig. 6. Participants’ ratings of mental effort and frustration via the NASA-TLX.

to their collected resources over the course of their task. When
new information needs arose, programmers searched to add
more resources to their set. While we saw some evidence
of removing resources from the collection and organizing
resources within the collection, programmers most commonly
added new resources to their set. This led to inefficiency
when programmers attempted to retrieve information. One of
the most common transitions programmers made was from
a previously seen page to another previously seen page. In
71% of these previously seen page accesses, programmers
remained on the page for less than five seconds, suggesting
that they were flipping through their collection seeking a
particular piece of information. Programmers also seemed to
be hesitant to delete information from their collection through
closing tabs; programmers opened about 3 times as many
tabs as they closed. Further, the use of search to revisit
previously seen pages suggested that programmers sometimes
needed to re-access the resources they had previously closed.
Programmers encountered inefficiencies in managing external
memory both when they curated their collection by closing re-
sources perceived as no longer relevant and when they retained
information they might need again, increasing the number of
resources to sift through to find the target information. These
details expand upon existing knowledge of external memory in
programming practices [4] and programmers’ use of general
contexts with respect to subgoals when programming [71].

As the model predicts, programmers do extensively leverage
external memory while learning a new API, primarily through
the use of browser tabs. The existence and significant use of
external memory exposes an opportunity for new programming
support tools to better manage programmers’ collected infor-
mation resources by 1) increasing the efficiency of returning to
relevant resources and 2) helping to organize the collection to
enable programmers to more easily dismiss and re-find subsets
of the collection as their tasks change.

B. Sources of Cognitive Load in API Learning

Work in the learning sciences suggests that learning is more
efficient and more effective when cognitive load is managed.
Typically these studies have been done in situations where
there is a single learning goal and the learning materials
and activities are provided. The process of API learning
differs in two important ways: first, the specific materials
and activities are selected by the learner and, second, the
learner is often pursuing both a task completion goal and
a learning goal simultaneously. We hypothesized we would
see some differences related to programmers’ activities in our
cognitive load ratings. Yet, they actually varied relatively little
over the course of the study session. We see two potential
interpretations. It is possible that cognitive load varies at inter-
vals shorter than twenty minutes and we needed a continuous
form of measurement to capture that. However, the relatively
flat cognitive load measurements may also reflect participants
selecting their actions and approaches to solving the problem
in order to regulate their overall load. Additional research is
necessary to differentiate between these two scenarios.

To optimize the opportunities for learning a new API, it
is still important to consider where extraneous load (which
hinders learning) and germane load (which helps learning) can
occur. If we can decrease extraneous load programmers have
to invest and increase the germane load programmers choose
to invest, we can likely improve API learning.

In the React task, we saw extraneous load arise in three main
ways: search inefficiencies, the need to make relevance judge-
ments about new and previously seen content, and through
the process of accessing previously seen content. Of these, the
costs of making relevance judgements and managing external
memory were the largest. However, it is unclear to what degree
these are general patterns or whether they are due to specific
characteristics of the React API and the task we used.

Because germane load is effort that programmers can choose
to invest or not, we posit that the best way to support it is by re-
moving the extraneous load required to invest germane load. In
the early stages of a task, providing easy access to explanatory
text for API related keywords in web resources may be helpful.
Later, based on the behavior of our participants, support like
highlighting the differences between programmers’ current
code and the example code within a given information resource
or automatically providing additional similar examples may
enable programmers to begin trying to understand the code
snippets. Approaches that leverage the programmers’ code
context [68]–[70] may be helpful in identifying closely related
and relevant code examples.

C. Extending Opportunistic Programming

Finally, we note that our results support and extend exist-
ing research on opportunistic programming and information
foraging in the context of code development. As in previous
work, we found that programmers interleaved programming
and coding sessions [12]. However, our participants used the
web more for learning than for reminders and built a collection
of resources they referred to repeatedly.

X. CONCLUSION

Learning new APIs has become necessary for many soft-
ware developers. Prior work has shown that learning APIs
can be a highly challenging task and has focused mainly on
supporting programmers in finding information. We document
a highly unexplored aspect of API learning using the web:
the use of external memory for storing and interacting with
a collection of web resources. While the use of external
memory to store found information may seem like a logical
extension of information foraging, our study demonstrates the
inefficiencies in use of external memory, which may have a
significant impact on API learning. Future work should verify
these results for additional APIs and a broader population.
Designers of API learning tools should consider incorporating
support for effective external memory use.

REFERENCES

[1] “Programmable Web: API directory,” 2018. [Online]. Available:
https://www.programmableweb.com/category/all/apis

[2] W. Santos, “Research shows interest in providing APIs
still high — ProgrammableWeb,” 2018. [Online]. Avail-
able: https://www.programmableweb.com/news/research-shows-interest-
providing-apis-still-high/research/2018/02/23

[3] B. A. Myers and J. Stylos, “Improving API usability,” Communications
of the ACM, vol. 59, no. 6, pp. 62–69, 2016.

[4] J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer, “Opportunistic
programming: How rapid ideation and prototyping occur in practice,”
in Proceedings of the 4th international workshop on End-user software
engineering. ACM, 2008, pp. 1–5.

[5] M. P. Robillard and R. Deline, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[6] M. P. Robillard, “What makes APIs hard to learn? Answers from
developers,” IEEE software, vol. 26, no. 6, pp. 27–34, 2009.

[7] C. Kelleher and M. Ichinco, “Towards a model of API learning,” in 2019
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2019, pp. 163–168.

[8] P. Pirolli and S. Card, “Information foraging in information access
environments,” in Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM Press/Addison-Wesley Publishing
Co., 1995, pp. 51–58.

[9] P. Pirolli and S. Card, “Information foraging.” Psychological review, vol.
106, no. 4, p. 643, 1999.

[10] J. Sweller, “Cognitive load during problem solving: Effects on learning,”
Cognitive science, vol. 12, no. 2, pp. 257–285, 1988.

[11] M. J. Intons-Peterson and J. Fournier, “External and internal memory
aids: When and how often do we use them?” Journal of Experimental
Psychology: General, vol. 115, no. 3, p. 267, 1986.

[12] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2009, pp. 1589–1598.

[13] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,
M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B.
Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state
of the art in end-user software engineering,” ACM Comput. Surv.,
vol. 43, no. 3, pp. 21:1–21:44, Apr. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1922649.1922658

[14] A. Ciborowska, N. A. Kraft, and K. Damevski, “Detecting and
characterizing developer behavior following opportunistic reuse of code
snippets from the web,” in Proceedings of the 15th International
Conference on Mining Software Repositories, ser. MSR ’18. New
York, NY, USA: ACM, 2018, pp. 94–97. [Online]. Available:
http://doi.acm.org/10.1145/3196398.3196467

[15] E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions
about unfamiliar APIs: An exploratory study,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 2012, pp. 266–276.

[16] A. Horvath, S. Grover, S. Dong, E. Zhou, F. Voichick, M. B. Kery,
S. Shinju, D. Nam, M. Nagy, and B. Myers, “The long tail: Understand-
ing the discoverability of api functionality,” in 2019 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
2019, pp. 157–161.

[17] C. R. Rupakheti and D. Hou, “Satisfying Programmers’ Information
Needs in API-Based Programming,” in Program Comprehension (ICPC),
2011 IEEE 19th International Conference on. IEEE, 2011, pp. 250–
253.

[18] M. J. Conway, Alice: Easy-to-learn three-dimensional scripting for
novices. University of Virginia, 1998.

[19] S. G. McLellan, A. W. Roesler, J. T. Tempest, and C. I. Spinuzzi,
“Building more usable APIs,” IEEE software, vol. 15, no. 3, pp. 78–
86, 1998.

[20] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of API
usability,” in Empirical Software Engineering and Measurement, 2013
ACM/IEEE international symposium on. IEEE, 2013, pp. 5–14.

[21] T. R. G. Green and M. Petre, “Usability Analysis of Visual Programming
Environments: A ’Cognitive Dimensions’ Framework,” Journal of visual
languages and computing, vol. 7, no. 2, pp. 131–174, 1996.

[22] S. Clarke, “Describing and measuring API usability with the cognitive
dimensions,” in Cognitive Dimensions of Notations 10th Anniversary
Workshop. Citeseer, 2005, p. 131.

[23] J. Stylos and S. Clarke, “Usability implications of requiring parameters
in objects’ constructors,” in Proceedings of the 29th international
conference on Software Engineering. IEEE Computer Society, 2007,
pp. 529–539.

[24] J. Stylos and B. A. Myers, “The implications of method placement on
API learnability,” in Proceedings of the 16th ACM SIGSOFT Interna-
tional Symposium on Foundations of software engineering. ACM, 2008,
pp. 105–112.

[25] S. Y. Jeong, Y. Xie, J. Beaton, B. A. Myers, J. Stylos, R. Ehret,
J. Karstens, A. Efeoglu, and D. K. Busse, “Improving documentation
for eSOA APIs through user studies,” in International Symposium on
End User Development. Springer, 2009, pp. 86–105.

[26] J. Nykaza, R. Messinger, F. Boehme, C. L. Norman, M. Mace, and
M. Gordon, “What programmers really want: results of a needs as-
sessment for SDK documentation,” in Proceedings of the 20th annual
international conference on Computer documentation. ACM, 2002, pp.
133–141.

[27] W. Maalej and M. P. Robillard, “Patterns of knowledge in API reference
documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264–1282, 2013.

[28] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Writing code to prototype, ideate, and discover,” IEEE software,
vol. 26, no. 5, pp. 18–24, 2009.

[29] B. Dorn, A. Stankiewicz, and C. Roggi, “Lost while searching: Difficul-
ties in information seeking among end-user programmers,” in Proceed-
ings of the 76th ASIS&T Annual Meeting: Beyond the Cloud: Rethinking
Information Boundaries. American Society for Information Science,
2013, p. 21.

[30] B. Dorn and M. Guzdial, “Learning on the job: characterizing the
programming knowledge and learning strategies of web designers,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2010, pp. 703–712.

[31] M. B. Rosson, J. Ballin, and H. Nash, “Everyday programming: Chal-
lenges and opportunities for informal web development,” in Visual
Languages and Human Centric Computing, 2004 IEEE Symposium on.
IEEE, 2004, pp. 123–130.

[32] R. Brooks, “Towards a theory of the comprehension of computer
programs,” International journal of man-machine studies, vol. 18, no. 6,
pp. 543–554, 1983.

[33] E. Soloway and K. Ehrlich, “Empirical studies of programming knowl-
edge,” IEEE Transactions on software engineering, no. 5, pp. 595–609,
1984.

[34] B. Shneiderman and R. Mayer, “Syntactic/semantic interactions in
programmer behavior: A model and experimental results,” International
Journal of Computer & Information Sciences, vol. 8, no. 3, pp. 219–238,
1979.

[35] N. Pennington, “Comprehension strategies in programming,” in Empiri-
cal studies of programmers: second workshop. Ablex Publishing Corp.,
1987, pp. 100–113.

[36] N. Pennington, “Stimulus structures and mental representations in expert
comprehension of computer programs,” Cognitive psychology, vol. 19,
no. 3, pp. 295–341, 1987.

[37] J.-M. Burkhardt, F. Détienne, and S. Wiedenbeck, “Object-oriented
program comprehension: Effect of expertise, task and phase,” Empirical
Software Engineering, vol. 7, no. 2, pp. 115–156, 2002.

[38] C. Schulte, “Block model: an educational model of program comprehen-
sion as a tool for a scholarly approach to teaching,” in Proceedings of
the Fourth international Workshop on Computing Education Research.
ACM, 2008, pp. 149–160.

[39] S. Letovsky, “Cognitive processes in program comprehension,” Journal
of Systems and software, vol. 7, no. 4, pp. 325–339, 1987.

[40] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models
and software maintenance,” Journal of Systems and Software, vol. 7,
no. 4, pp. 341–355, 1987.

[41] M. P. O’Brien, J. Buckley, and T. M. Shaft, “Expectation-based,
inference-based, and bottom-up software comprehension,” Journal of
Software Maintenance and Evolution: Research and Practice, vol. 16,
no. 6, pp. 427–447, 2004.

[42] A. Von Mayrhauser and A. M. Vans, “Program comprehension during
software maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–
55, 1995.

[43] C. L. Corritore and S. Wiedenbeck, “An exploratory study of program
comprehension strategies of procedural and object-oriented program-
mers,” International Journal of Human-Computer Studies, vol. 54, no. 1,
pp. 1–23, 2001.

[44] T. M. Shaft and I. Vessey, “The role of cognitive fit in the relationship
between software comprehension and modification,” Mis Quarterly, pp.
29–55, 2006.

[45] C. Douce, “The stores model of code cognition,” 2008.
[46] P. Gerjets and K. Scheiter, “Goal configurations and processing strategies

as moderators between instructional design and cognitive load: Evidence
from hypertext-based instruction,” Educational psychologist, vol. 38,
no. 1, pp. 33–41, 2003.

[47] J. J. Van Merrienboer and J. Sweller, “Cognitive load theory and com-
plex learning: Recent developments and future directions,” Educational
psychology review, vol. 17, no. 2, pp. 147–177, 2005.

[48] D. Parsons and P. Haden, “Parson’s programming puzzles: a fun and
effective learning tool for first programming courses,” in Proceedings of
the 8th Australasian Conference on Computing Education-Volume 52.
Australian Computer Society, Inc., 2006, pp. 157–163.

[49] P. A. Kirschner, J. Sweller, and R. E. Clark, “Why minimal guid-
ance during instruction does not work: An analysis of the failure of
constructivist, discovery, problem-based, experiential, and inquiry-based
teaching,” Educational psychologist, vol. 41, no. 2, pp. 75–86, 2006.

[50] R. A. Tarmizi and J. Sweller, “Guidance during mathematical problem
solving.” Journal of educational psychology, vol. 80, no. 4, p. 424, 1988.

[51] M. T. Chi, M. Bassok, M. W. Lewis, P. Reimann, and R. Glaser, “Self-
explanations: How students study and use examples in learning to solve
problems,” Cognitive science, vol. 13, no. 2, pp. 145–182, 1989.

[52] A. Renkl, R. Stark, H. Gruber, and H. Mandl, “Learning from worked-
out examples: The effects of example variability and elicited self-
explanations,” Contemporary educational psychology, vol. 23, no. 1, pp.
90–108, 1998.

[53] R. K. Atkinson, A. Renkl, and M. M. Merrill, “Transitioning from
studying examples to solving problems: Effects of self-explanation
prompts and fading worked-out steps.” Journal of Educational Psychol-
ogy, vol. 95, no. 4, p. 774, 2003.

[54] M. J. Intons-Peterson, “External memory aids and their relation to
memory,” in Cognitive psychology applied. Psychology Press, 2014,
pp. 145–168.

[55] E. F. Risko and S. J. Gilbert, “Cognitive offloading,” Trends in Cognitive
Sciences, vol. 20, no. 9, pp. 676–688, 2016.

[56] S. D. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bellamy,
J. Lawrance, and I. Kwan, “An information foraging theory perspective
on tools for debugging, refactoring, and reuse tasks,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 22, no. 2,
p. 14, 2013.

[57] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on software
engineering, vol. 32, no. 12, pp. 971–987, 2006.

[58] N. Niu, A. Mahmoud, and G. Bradshaw, “Information foraging as a
foundation for code navigation (NIER track),” in Proceedings of the
33rd International Conference on Software Engineering. ACM, 2011,
pp. 816–819.

[59] J. Lawrance, R. Bellamy, and M. Burnett, “Scents in programs: Does
information foraging theory apply to program maintenance?” in Visual
Languages and Human-Centric Computing, 2007. VL/HCC 2007. IEEE
Symposium on. IEEE, 2007, pp. 15–22.

[60] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector, “Using information
scent to model the dynamic foraging behavior of programmers in main-
tenance tasks,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2008, pp. 1323–1332.

[61] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information forag-
ing theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197–215, 2013.

[62] S. K. Kuttal, A. Sarma, and G. Rothermel, “Predator behavior in the wild
web world of bugs: An information foraging theory perspective,” 2013
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 59–66, 2013.

[63] S. G. Hart, “Nasa-task load index (nasa-tlx); 20 years later,” in Pro-
ceedings of the human factors and ergonomics society annual meeting,
vol. 50, no. 9. Sage publications Sage CA: Los Angeles, CA, 2006,
pp. 904–908.

[64] “Atom. URL: https://atom.io/,” 2018. [Online]. Available:
https://atom.io/

[65] D. Hou and L. Li, “Obstacles in using frameworks and APIs: An ex-
ploratory study of programmers’ newsgroup discussions,” in 2011 IEEE
19th International Conference on Program Comprehension. IEEE,
2011, pp. 91–100.

[66] Y. Lu and I. H. Hsiao, “Personalized Information Seeking Assistant
(PiSA): from programming information seeking to learning,” Informa-
tion Retrieval Journal, vol. 20, no. 5, pp. 433–455, 2017.

[67] L. Martie, T. D. LaToza, and A. van der Hoek, “Codeexchange:
Supporting reformulation of internet-scale code queries in context (t),”
Automated Software Engineering (ASE), 2015 30th IEEE/ACM Interna-
tional Conference on, pp. 24–35, 2015.

[68] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining,” in
Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation - PLDI ’05, vol. 40, no. 6. New
York, New York, USA: ACM Press, 2005, p. 48. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1065010.1065018

[69] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Prompter,” Empirical Software Engineering, pp. 1–42, 2015.

[70] L. Ponzanelli, G. Bavota, D. P. M, R. Oliveto, and M. Lanza, “Prompter:
Turning the IDE into a self-confident programming assistant,” Empirical
Software Engineering, vol. 21, no. 5, pp. 2190–2231, oct 2016. [Online].
Available: http://link.springer.com/10.1007/s10664-015-9397-1

[71] S. Chattopadhyay, N. Nelson, Y. R. Gonzalez, A. A. Leon, R. Pandita,
and A. Sarma, “Latent patterns in activities: a field study of how
developers manage context,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 373–
383.

